版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省丹東市通遠(yuǎn)堡高中2024屆高一上數(shù)學(xué)期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知、是方程兩個根,且、,則的值是()A. B.C.或 D.或2.對于每個實數(shù)x,設(shè)取兩個函數(shù)中的較小值.若動直線y=m與函數(shù)的圖象有三個不同的交點,它們的橫坐標(biāo)分別為,則的取值范圍是()A. B.C. D.3.設(shè)a,b均為實數(shù),則“a>b”是“a3A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.,,,則()A. B.C. D.5.若,則cos2x=()A. B.C. D.6.下列函數(shù)中,在定義域內(nèi)既是單調(diào)函數(shù),又是奇函數(shù)的是()A. B.C. D.7.“”是“”成立的條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要8.下列所給出的函數(shù)中,是冪函數(shù)的是A. B.C. D.9.是定義在上的函數(shù),,且在上遞減,下列不等式一定成立的是A. B.C. D.10.若偶函數(shù)f(x)在區(qū)間(﹣∞,0]上單調(diào)遞減,且f(3)=0,則不等式(x﹣1)f(x)>0的解集是A. B.C D.,二、填空題:本大題共6小題,每小題5分,共30分。11.1881年英國數(shù)學(xué)家約翰·維恩發(fā)明了Venn圖,用來直觀表示集合之間的關(guān)系.全集,集合,的關(guān)系如圖所示,其中區(qū)域Ⅰ,Ⅱ構(gòu)成M,區(qū)域Ⅱ,Ⅲ構(gòu)成N.若區(qū)域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,則實數(shù)a的取值范圍是______12.函數(shù),若最大值為,最小值為,,則的取值范圍是______.13.如圖,扇形的面積是,它的周長是,則弦的長為___________.14.冪函數(shù)為偶函數(shù)且在區(qū)間上單調(diào)遞減,則________,________.15.若、是方程的兩個根,則__________.16.函數(shù)的零點是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四邊形中,,,,,、分別在、上,,現(xiàn)將四邊形沿折起,使平面平面()若,是否存在折疊后的線段上存在一點,且,使得平面?若存在,求出的值;若不存在,說明理由()求三棱錐的體積的最大值,并求此時點到平面的距離18.設(shè)函數(shù).求函數(shù)的單調(diào)區(qū)間,對稱軸及對稱中心.19.已知函數(shù)f(x)(1)求f(f(﹣1));(2)畫出函數(shù)的圖象并求出函數(shù)f(x)在區(qū)間[0,4)上的值域20.如圖,在棱長為2的正方體中,E,F(xiàn)分別是棱的中點.(1)證明:平面;(2)求三棱錐的體積.21.已知,.(1)求的值;(2)求的值;(3)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】先用根與系數(shù)的關(guān)系可得+=,=4,從而可得<0,<0,進(jìn)而,所以,然后求的值,從而可求出的值.【詳解】由題意得+=,=4,所以,又、,故,所以,又.所以.故選:B.2、C【解析】如圖,作出函數(shù)的圖象,其中,設(shè)與動直線的交點的橫坐標(biāo)為,∵圖像關(guān)于對稱∴∵∴∴故選C點睛:本題首先考查新定義問題,首先從新定義理解函數(shù),為此解方程,確定分界點,從而得函數(shù)的具體表達(dá)式,畫出函數(shù)圖象,通過圖象確定三個數(shù)中具有對稱關(guān)系,,因此只要確定的范圍就能得到的范圍.3、C【解析】因為a3-b3=(a-b)(a24、B【解析】根據(jù)對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性即可得出,,的大小關(guān)系【詳解】,,,故選:5、D【解析】直接利用二倍角公式,轉(zhuǎn)化求解即可【詳解】解:,則cos2x=1﹣2sin2x=1﹣2故選D【點睛】本題考查二倍角的三角函數(shù),考查計算能力6、A【解析】根據(jù)解析式可直接判斷出單調(diào)性和奇偶性.【詳解】對于A:為奇函數(shù)且在上單調(diào)遞增,滿足題意;對于B:為非奇非偶函數(shù),不合題意;對于C:為非奇非偶函數(shù),不合題意;對于D:在整個定義域內(nèi)不具有單調(diào)性,不合題意.故選:A.7、B【解析】求出不等式的等價條件,結(jié)合不等式的關(guān)系以及充分條件和必要條件的定義進(jìn)行判斷即可【詳解】由不等式“”,解得,則“”是“”成立的必要不充分條件即“”是“”成立的必要不充分條件,故選B【點睛】本題主要考查了充分條件和必要條件的判斷,其中解答中結(jié)合不等式的關(guān)系是解決本題的關(guān)鍵,著重考查了推理與判斷能力,屬于基礎(chǔ)題.8、B【解析】根據(jù)冪函數(shù)的定義,直接判定選項的正誤,推出正確結(jié)論【詳解】冪函數(shù)的定義規(guī)定;y=xa(a為常數(shù))為冪函數(shù),所以選項中A,C,D不正確;B正確;故選B【點睛】本題考查冪函數(shù)的定義,考查判斷推理能力,基本知識掌握情況,是基礎(chǔ)題9、B【解析】對于A,由為偶函數(shù)可得,又,由及在上為減函數(shù)得,故A錯;對于B,因同理可得,故B對;對于C,因無法比較大小,故C錯;對于D,取,則;取,則,故與大小關(guān)系不確定,故D錯,綜上,選B點睛:對于奇函數(shù)或偶函數(shù),如果我們知道其一側(cè)的單調(diào)性,那么我們可以知道另一側(cè)的單調(diào)性,解題時注意轉(zhuǎn)化10、B【解析】由偶函數(shù)在區(qū)間上單調(diào)遞減,且,所以在區(qū)間上單調(diào)遞增,且,即函數(shù)對應(yīng)的圖象如圖所示,則不等式等價為或,解得或,故選B考點:不等關(guān)系式的求解【方法點晴】本題主要考查了與函數(shù)有關(guān)的不等式的求解,其中解答中涉及到函數(shù)的奇偶性、函數(shù)的單調(diào)性,以及函數(shù)的圖象與性質(zhì)、不等式的求解等知識點的綜合考查,著重考查了學(xué)生分析問題和解答問題的能,以及推理與運(yùn)算能力,試題比較基礎(chǔ),屬于基礎(chǔ)題,本題的解得中利用函數(shù)的奇偶性和單調(diào)性,正確作出函數(shù)的圖象是解答的關(guān)鍵二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由,又區(qū)域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,則或解不等式組即可【詳解】由,又區(qū)域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,則或解得故答案為:12、【解析】先化簡,然后分析的奇偶性,將的最大值和小值之和轉(zhuǎn)化為和有關(guān)的式子,結(jié)合對勾函數(shù)的單調(diào)性求解出的取值范圍.【詳解】,令,定義域為關(guān)于原點對稱,∴,∴為奇函數(shù),∴,∴,,由對勾函數(shù)的單調(diào)性可知在上單調(diào)遞減,在上單調(diào)遞增,∴,,,∴,∴,故答案為:.【點睛】關(guān)鍵點點睛:解答本題的關(guān)鍵在于函數(shù)奇偶性的判斷,同時需要注意到奇函數(shù)在定義域上如果有最值,那么最大值和最小值一定是互為相反數(shù).13、【解析】由扇形弧長、面積公式列方程可得,再由平面幾何的知識即可得解.【詳解】設(shè)扇形的圓心角為,半徑為,則由題意,解得,則由垂徑定理可得.故答案為:.14、(1).或3(2).4【解析】根據(jù)題意可得:【詳解】區(qū)間上單調(diào)遞減,,或3,當(dāng)或3時,都有,,.故答案為:或3;4.15、【解析】由一元二次方程根與系數(shù)的關(guān)系可得,,再由
,運(yùn)算求得結(jié)果【詳解】、是方程的兩個根,,,,,故答案為:16、和【解析】令y=0,直接解出零點.【詳解】令y=0,即,解得:和故答案為:和【點睛】已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2)答案見解析.【解析】(1)存在,使得平面,此時,即,利用幾何關(guān)系可知四邊形為平行四邊形,則,利用線面平行的判斷定理可知平面成立(2)由題意可得三棱錐的體積,由均值不等式的結(jié)論可知時,三棱錐的體積有最大值,最大值為建立空間直角坐標(biāo)系,則,平面的法向量為,故點到平面的距離試題解析:()存在,使得平面,此時證明:當(dāng),此時,過作,與交,則,又,故,∵,,∴,且,故四邊形為平行四邊形,∴,∵平面,平面,∴平面成立()∵平面平面,平面,,∴平面,∵,∴,,,故三棱錐的體積,∴時,三棱錐的體積有最大值,最大值為建立如圖所示的空間直角坐標(biāo)系,則,,,,,設(shè)平面的法向量為,則,∴,取,則,,∴∴點到平面的距離18、函數(shù)增區(qū)間為;減區(qū)間為;對稱軸為;對稱中心為【解析】根據(jù)的單調(diào)區(qū)間、對稱軸及對稱中心即可得出所求的.【詳解】函數(shù)增區(qū)間為同理函數(shù)減區(qū)間為令其對稱軸為令其對稱中心為【點睛】本題主要考查的是正弦函數(shù)的圖像和性質(zhì),考查學(xué)生對正弦函數(shù)圖像和性質(zhì)的理解和應(yīng)用,同時考查學(xué)生的計算能力,是中檔題.19、(1)(2)圖像見解析;值域為[1,16)【解析】(1)先求出的值,然后再求的值.(2)在同一坐標(biāo)系中分別作出函數(shù)的圖像,在根據(jù)各自的定義域選取相應(yīng)的圖像,然后可根據(jù)函數(shù)圖像得出函數(shù)在[0,4)上的值域.【詳解】(1)∵f(﹣1)=3,f(3)=9,∴f(f(﹣1))=f(3)=9(2)圖象如下:∵f(0)=2,f(4)=16,f(1)=1,根據(jù)數(shù)圖像,可得函數(shù)在區(qū)間[0,4)上值域為[1,16)【點睛】本題考查求分段函數(shù)的函數(shù)值和作出分段函數(shù)的圖像,并根據(jù)函數(shù)圖像求函數(shù)的值域,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】(1)連接,設(shè),連接EF,EO,利用中位線和正方體的性質(zhì)證明四邊形是平行四邊形,進(jìn)而可證平面;(2)由平面可得點F,到平面的距離相等,則,進(jìn)而求得三棱錐的體積即可【詳解】(1)證明:連接,設(shè),連接EF,EO,因為E,F分別是棱的中點,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年數(shù)字水位儀項目申請報告
- 2025年國土資源普查核儀器項目申請報告模范
- 2024-2025學(xué)年西藏那曲市巴青縣三上數(shù)學(xué)期末統(tǒng)考試題含解析
- 軍訓(xùn)心得體會匯編15篇
- 2025年水上加油船項目規(guī)劃申請報告模板
- 2025年放射性廢氣處置設(shè)備項目申請報告
- 2022裝修監(jiān)理年終工作總結(jié)
- 去超市實習(xí)報告范文8篇
- 住房申請書模板10篇
- 演講競聘演講稿范文6篇
- GA 1802.2-2022生物安全領(lǐng)域反恐怖防范要求第2部分:病原微生物菌(毒)種保藏中心
- 企業(yè)EHS風(fēng)險管理基礎(chǔ)智慧樹知到答案章節(jié)測試2023年華東理工大學(xué)
- TZJXDC 002-2022 電動摩托車和電動輕便摩托車用閥控式鉛酸蓄電池
- GB/T 337.1-2002工業(yè)硝酸濃硝酸
- 《解放戰(zhàn)爭》(共48張PPT)
- 借調(diào)人員年終總結(jié)模板【5篇】
- GB 1886.342-2021食品安全國家標(biāo)準(zhǔn)食品添加劑硫酸鋁銨
- 期末復(fù)習(xí)必背作文 魯教版八年級上冊英語全冊
- 放射工作人員法律法規(guī)及防護(hù)知識培訓(xùn)考核試題附答案
- 2023年全科醫(yī)師轉(zhuǎn)崗培訓(xùn)理論考試試題及答案
- 西方法律思想史 課件
評論
0/150
提交評論