




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
考點01平方根與立方根知識框架基礎知識點知識點1-1算術(shù)平方根1)算術(shù)平方根概念:一個正數(shù)的平方等于a,即x2=a,那么這個正數(shù)x叫作a的算術(shù)平方根。其中,a叫作被開方數(shù),規(guī)定0的算術(shù)平方根為0。記作a=x。注:=1\*GB3①“”表示的是算術(shù)平方根(與后面的平方根注意區(qū)分)=2\*GB3②a0,x0。負數(shù)沒有算術(shù)平方根(因為x20)2)常見算術(shù)平方根表:被開方數(shù)149162536496481100算術(shù)平方根12345678910被開方數(shù)121144169196225256289324361400算術(shù)平方根111213141516171819201.(2021·湖南邵陽市·中考真題)16的算術(shù)平方根是___________.2.(2020·岑溪市第六中學初二月考)下列說法正確的是()A.﹣6是36的算術(shù)平方根 B.±6是36的算術(shù)平方根C.是36的算術(shù)平方根 D.6是36的算術(shù)平方根3.(2020·內(nèi)蒙古科爾沁右翼前旗初二期中)下列語句、式子中①4是16的算術(shù)平方根,即②4是16的算術(shù)平方根,即③-7是49的算術(shù)平方根,即④7是的算術(shù)平方根,即其中正確的是()A.①③ B.②③ C.②④ D.①④4.(2020·齊齊哈爾市朝鮮族學校初二期中)的算術(shù)平方根是_________;(-)2的算術(shù)平方根是_________.知識點1-2平方根1)平方根的概念:如果一個數(shù)的平方等于a,那么這個數(shù)叫作a的平方根或者二次方根。求一個數(shù)a的平方根的運算,叫作開平方。注:=1\*GB3①“”表示算數(shù)平方根的意思,平方根表示為“”=2\*GB3②正數(shù)的平方根有兩個,它們互為相反數(shù)。且正數(shù)根即為算術(shù)平方根;=3\*GB3③0的平方根和算術(shù)平方根都為0;=4\*GB3④負數(shù)沒有平方根和算術(shù)平方根。2)特點:算術(shù)平方根是平方根正值部分;平方根是算術(shù)平方根及其相反數(shù)。3)產(chǎn)生的原因:若a>0;(-a)1=-a1;(-a)2=a2;(-a)3=-a3;(-a)4=a4奇數(shù)次方時,符號不變,結(jié)果仍為負數(shù);偶數(shù)次方時,值變?yōu)檎龜?shù)(與正數(shù)的對應次方的值相同)因此,奇數(shù)次方,一個數(shù)對應一個結(jié)果;偶數(shù)次方,兩個數(shù)對應一個結(jié)果,且這兩個數(shù)互為相反數(shù)。4)開方是次方的逆運算。5)預測:=1\*GB3①奇數(shù)次開方,沒有算術(shù)平方根與平方根區(qū)別,結(jié)果僅為一個值;=2\*GB3②偶數(shù)次開方,會存在兩值的情況。1.(2020·廣東白云初二期末)下列說法正確的是()A.的平方根是 B.的平方根 C.的平方根 D.的平方根2.(2021·黑龍江甘南初二期末)的平方根是____.3.(2021·遼寧八年級期末)(﹣)2的平方根是()A.﹣ B. C.± D.±4.(2021·全國初二課時練習)下列說法正確的是()A.任何非負數(shù)都有兩個平方根 B.一個正數(shù)的平方根仍然是正數(shù)C.只有正數(shù)才有平方根 D.負數(shù)沒有平方根4.(2021·山西渾源初二期中)下列各式正確的是()A.B.C.D.5.(2020·江蘇沭陽初二期末)下列說法正確的是()A.若=﹣a,則a<0 B.若=a,則a>0C.=a2b4 D.3的平方根是6.(2020·河北省初二期中)一個自然數(shù)的一個平方根是,則與它相鄰的下一個自然數(shù)的平方根是()A.B.C.D.知識點1-3算術(shù)平方根的性質(zhì)及應用1)算術(shù)平方根a有意義,存在“雙重非負性”:=1\*GB3①a≥0;=2\*GB3②a≥01.(2020·江蘇宿遷初二期末)若.則的平方根是_____.2.(2020·內(nèi)蒙古烏蘭浩特·初二期末)若+(x+3)2=0,則x﹣y的值為()A.1 B.﹣1 C.7 D.﹣73.(2020·江蘇宜興·初二期中)若實數(shù)m,n滿足,且m,n恰好是等腰△ABC的兩條邊的邊長,則△ABC的周長是(
)A.12 B.8 C.10 D.10或84.(2020·四平市第三中學校初二月考)已知與與是互為相反數(shù).求:4a+b的平方根.知識點1-4立方根1)立方根的概念:如果一個數(shù)x的立方等于a,那么這個數(shù)x叫作a的立方根或三次方根,a叫作被開立方數(shù),求數(shù)x的過程的運算叫作開立方。記作:2)立方根的特點:=1\*GB3①3a,a可以為任意數(shù)(a>0,a=0,a<0)=2\*GB3②&正數(shù)的立方根為正數(shù)&負數(shù)的立方根為負數(shù)&0的立方根為0=3\*GB3③3-a=-33)比較平方根立方根表示 范圍 a0 a為任意數(shù)值 兩個值 唯一值1.(2021春?白云區(qū)期末)下列說法正確的是()A.64的立方根是±364=±4 B.-12是-C.3-27=-327 D.立方根等于它本身的數(shù)是02.(2020·山東單縣初二期末)下列語句正確的是__________(只填序號).①的算術(shù)平方根是2;②36的平方根是6;③的立方根是;④的立方根是3.(2020·河北省初二期中)一個自然數(shù)的立方根為a,則下一個自然數(shù)的立方根是()A.a(chǎn)+1 B. C. D.a(chǎn)3+14.(2021春?倉山區(qū)期中)如果﹣a是b的立方根,那么下列結(jié)論正確的是()A.a(chǎn)是﹣b的立方根 B.a(chǎn)是b的立方根 C.﹣a是﹣b的立方根 D.±a都是b的立方根5.(2020·四川涼山初二期末)的算術(shù)平方根是______,立方根是它本身的數(shù)是________.6.(2020·山西渾源初二期中)求下列各式中的x值:(1)16(x+1)2=25;(2)8(1﹣x)3=125知識點1-5有理數(shù)與無理數(shù)1)無理數(shù):無限不循環(huán)小數(shù)。例:等注:=1\*GB3①分數(shù)都是有限小數(shù)或無限循環(huán)小數(shù)=2\*GB3②兩個無理數(shù)之間運算,結(jié)果可能是有理數(shù)。例:×(兩個有理數(shù)之間運算,結(jié)果仍然是有理數(shù))2)有理數(shù):整數(shù)和分數(shù)的集合1.(2020·江蘇宿遷初二期末)在中,無理數(shù)的個數(shù)是()A.2個 B.3個 C.4個 D.5個2.(2020·黑龍江甘南初二期末)下列說法中正確的是(
)A.無限小數(shù)是無理數(shù) B.用根號形式表示的數(shù)是無理數(shù)C.無理數(shù)是無限小數(shù) D.無理數(shù)是開方開不盡的數(shù)3.(2020·河北省初三一模)如圖是一個無理數(shù)生成器的工作流程圖,根據(jù)該流程圖,下面說法:①當輸出值y為時,輸入值x為3或9;②當輸入值x為16時,輸出值y為;③對于任意的正無理數(shù)y,都存在正整數(shù)x,使得輸入x后能夠輸出y;④存在這樣的正整數(shù)x,輸入x之后,該生成器能夠一直運行,但始終不能輸出y值.其中錯誤的是()A.①② B.②④ C.①④ D.①③4.(2020·山東寧陽初二期末)在,,1.732,,,3.1010010001……,中無理數(shù)有()A.1 B.2 C.3 D.4知識點1-6實數(shù)的分類1)實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)2)分類:實數(shù)&有理數(shù)&整數(shù)&分數(shù)&無理數(shù)每個實數(shù)都可以用數(shù)軸上的一個點來表示:反過來,數(shù)軸上的每一個點都表示一個實數(shù),即實數(shù)和數(shù)軸上的點是一一對應的.因此,數(shù)軸正好可以被實數(shù)填滿.1.(2019·全國初二單元測試)下列說法中,正確的是()A.實數(shù)可分為正實數(shù)和負實數(shù) B.、、都是無理數(shù)C.絕對值最小的實數(shù)是 D.無理數(shù)包括正無理數(shù),零和負無理數(shù)2.(2020·河北省初二期中)把下列各數(shù)填入相應的集合圈里(填序號)⑴﹣30⑵⑶3.14⑷⑸0⑹+20⑺﹣2.6⑻⑼⑽⑾﹣0.5252252225…(每兩個5之間依次增加1個2)⑿⒀3.(2020·遼寧省初三二模)有一個數(shù)值轉(zhuǎn)換器,流程如圖:當輸入x的值為64時,輸出y的值是_____.4.(2020·齊齊哈爾市朝鮮族學校初二期中)與數(shù)軸上的點成一一對應關系的數(shù)是()A.有理數(shù) B.整數(shù) C.無理數(shù) D.實數(shù)5.(2020·湖南雨花·初二期末)有下列六種說法:①數(shù)軸上有無數(shù)多個表示無理數(shù)的點;②帶根號的數(shù)不一定是無理數(shù);③每個有理數(shù)都可以用數(shù)軸上唯一的點來表示;④數(shù)軸上每一個點都表示唯一一個實數(shù);⑤沒有最大的負實數(shù),但有最小的正實數(shù);⑥沒有最大的正整數(shù),但有最小的正整數(shù).其中說法錯誤的有()A.⑤ B.②⑤ C.②④⑥ D.①②③④知識點1-7實數(shù)的有關概念及運算1)在實數(shù)范圍內(nèi),相反數(shù)、倒數(shù)絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù)、倒數(shù)、絕對值的意義完全相同、2)實數(shù)和有理數(shù)一樣,可以進行加、減、乘、除乘方運算,而且有理數(shù)的運算法則與運算律對實數(shù)仍然適用。1.(2020·廈門市湖濱中學初二期末)計算下列各題:(1)4的平方根是______;(2)25的算術(shù)平方根是____;(3)8的立方根是______;(4)的相反數(shù)是_____;(5)的絕對值是_____;(6)___3;(填>,<或=)2.(2020·河北魏縣·初二期末)下面與互為相反數(shù)的是()A. B. C. D.3.(2021·全國初二課時練習)的算術(shù)平方根的倒數(shù)是()A.4 B. C.2 D.4.(2020·湖北江岸·初二期末)計算_________.5.(2020·山東沂水·初二期中)如圖所示是一個數(shù)值轉(zhuǎn)換器,若輸入某個正整數(shù)值x后,輸出的y值為4,則輸入的x值可能為()A.1 B.6 C.9 D.106.(2020·福建省廈門第六中學初二月考)如圖,某計算器中有、、三個按鍵,以下是這三個按鍵的功能:①:將熒幕顯示的數(shù)變成它的算術(shù)平方根;②:將熒幕顯示的數(shù)變成它的倒數(shù);③:將熒幕顯示的數(shù)變成它的平方.小明輸入一個數(shù)據(jù)后,按照以下步驟操作,依次按照從第一步到第三步循環(huán)按鍵.若一開始輸入的數(shù)據(jù)為10,那么第2020步之后,顯示的結(jié)果是()A.100 B.1 C.0.01 D.10知識點1-8實數(shù)的大小比較與估算1)數(shù)軸法在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,2)利用法則正實數(shù)都大于0,負實數(shù)都小于0;正實數(shù)大于一切負實數(shù):兩個負實數(shù)相比較,絕對值大的反而小.3)要估算3a的近似值,第一步先確定估算數(shù)的整數(shù)范圍,如23<10<33,所以2第二步以較小整數(shù)為基礎,開始逐步加0.1(或以較大整數(shù)為基礎,開始逐步減0.1),并求其立方確定估算數(shù)的十分位;后續(xù)小數(shù)重復如上步驟。平方根的估算同理可得。1.(2021·四川省崇慶中學初中校區(qū)初二月考)比較實數(shù)的大小:(1)_____;(2)_____2.(2020·河南省初二期中)通過估算3,,,的大小為:_____(用“<“連接).3.(2020·江蘇海安初二期中)的整數(shù)部分是a,小數(shù)部分是b,則a﹣b的值是()A. B.6+ C.6﹣ D.﹣64.(2020·四川省成都高新實驗中學初二月考)規(guī)定用符號表示一個實數(shù)的整數(shù)部分,如,則()A.4 B.3 C.2 D.15.(2021·上海市松江區(qū)九亭中學初二期中)已知面積為10的正方形的邊長為,那么的取值范圍是()A. B. C. D.6.(2020·福建省初二期中)(1)采用夾逼法,利用的一系列不足近似值和過剩近似值來估計它的大小的過程如下:因為,所以因為,,所以因為,所以因為,所以因此(精確到百分位),使用夾逼法,求出的近似值(精確到百分位).(2)我們規(guī)定用符號表示數(shù)的整數(shù)部分,例如①按此規(guī)定;②如果的整數(shù)部分是的小數(shù)部分是求的值.重難點題型題型1運用平方根和算術(shù)平方根的概念解題解題技巧:平方根與算術(shù)平方根的區(qū)別于聯(lián)系:算術(shù)平方根平方根區(qū)別定義如果一個正數(shù)x的平方等于a,那么這個正數(shù)x叫作a的算術(shù)平方根如果一個數(shù)的平方等于a,那么這個數(shù)叫作a的平方根個數(shù)正數(shù)的算術(shù)平方根只有一個正數(shù)的平方根有兩個表示方法正數(shù)a的算術(shù)平方根表示為a正數(shù)a的平方根表示為±a取值范圍正數(shù)的算術(shù)平方根一定是正數(shù)正數(shù)的平方根為一正一負,互為相反數(shù)聯(lián)系具體包含關系平方根包含算術(shù)平方根,一個數(shù)的正的平方根就是它的算術(shù)平方根存在的條件只有非負數(shù)才有平方根和算術(shù)平方根00的平方根和算術(shù)平方根都是01.(2020·岑溪市第六中學初二月考)下列說法中,不正確的是()A.10的立方根是B.是4的一個平方根C.的平方根是D.0.01的算術(shù)平方根是0.12.(2020·內(nèi)蒙古科爾沁右翼前旗初二期中)一個數(shù)的算術(shù)平方根與它的立方根的值相同,則這個數(shù)是()A.1 B.0或1 C.0 D.非負數(shù)3.(2020·山東省初三三模)的算術(shù)平方根是()A.2 B.±2 C. D.4.(2020·江蘇海安初二期中)下列說法:①±3都是27的立方根;②的算術(shù)平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算術(shù)平方根,其中正確的有()A.1個 B.2個 C.3個 D.4個5.(2020·江西上高初二月考)下列說法中,正確的是()A.16的算術(shù)平方根是﹣4 B.25的平方根是5C.﹣27的立方根是﹣3 D.1的立方根是±16.(2020·河南省初二期中)按如圖所示的程序計算:若開始輸入的值為,輸出的值是_______.7.(2020秋?惠山區(qū)校級月考)下列語句正確的是()A.10的平方根是100 B.100的平方根是10 C.﹣2是﹣4的平方根 D.49的平方根是±23題型2利用平方根和立方根解方程解題技巧:(1)先將方程化簡為(x+a)2=h=1\*GB3①當h≥0時,x+a=±h,則x=-a±h;=2\*GB3②當h<0時,方程無解(2)求立方根的運算,一般先把式子化為x3=a的形式,當有(x±m(xù))3的形式,先把x1.(2020·云南省個舊市第二中學初二期中)求下式中的值:2.(2021春?巴楚縣月考)求下列各式中x的值:(1)x2﹣5=49;(2)3x2﹣15=0;(3)2(x+1)2=128.3.(2021春?岷縣月考)求下列各式中x的值.(1)(2x﹣1)2=25.(2)x2-12149=04.(2020·江蘇昆山·初二期末)求下列各式中x的值:(1)4x2﹣12=0(2)48﹣3(x﹣2)2=05.(2020·遼寧營口·初二期中)利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.6.(2020·湖北蘄春·初二期中)求下列各式中的x:(1)4(x+2)2﹣16=0;(2)(2x﹣1)3+=1.7.(2020·寧津縣育新中學初二期中)求下列各式中x的值:(1)4(x+1)2-9=0;(2)(3x+2)3-1=.8.(2020·新鄉(xiāng)市第二十二中學初二月考)求下列各式中x的值:(1)(2)題型3算術(shù)平方根的雙重非負性解題技巧:=1\*GB3①解決此類問題關鍵是掌握算術(shù)平方根,絕對值,偶次乘方均具有非負性.=2\*GB3②多個非負數(shù)相加為0,則這多個非負數(shù)必定為0.1.(2020·海安市白甸鎮(zhèn)初級中學初二月考)已知:實數(shù)、滿足關系式,求:的值.2.(2020·河北省初二期中)若與互為相反數(shù),則=_____.3.(2020·山東省初二月考)已知=0,(a﹣b)b-1=_______。4.(2020·廣東華南師大附中初二期中)已知與互為相反數(shù).(1)求2a-3b的平方根;(2)解關于x的方程.5.(2020·北京市第一六一中學初二期中)已知與互為相反教,是的方根,求的平方根6.(2021春?安寧市校級期中)若x-1+(y+2)2=0,則(x+y)2021等于.7.(2021春?浦東新區(qū)月考)若x-1與|2x+y﹣6|互為相反數(shù),則(x+y)2的平方根是.8.(2021春?海淀區(qū)校級期中)當x=時,代數(shù)式x-2+1取最小值為.題型4探究規(guī)律解題技巧:解決此類問題關鍵是掌握一個被開方數(shù)的小數(shù)點向左或向右移動兩位,它的算術(shù)平方根的小數(shù)點就相應地向左或向右移動1位;1.(2021春?望城區(qū)期末)已知38=2,38000=20,30.008=0.2,則32.(2021春?重慶月考)若3≈1.732,30≈5.477,31728=12,317.28≈2.585,則300≈,3.(2021春?天津期中)已知31.12≈1.038,311.2≈2.237,3112≈4.820,則34.(2020·渦陽縣王元中學初二月考)若=5.036,=15.906,則=__________.5.(2020?海淀區(qū)初二期末)如表所示,被開方數(shù)a的小數(shù)點位置移動和它的算術(shù)平方根a的小數(shù)點位置移動規(guī)律符合一定的規(guī)律,若a=180,且-3.24=-1.8,則被開方數(shù)a的值為a…0.0000010.011100100001000000…a…0.0010.11101001000…6.(2020?唐縣期末)若25.36=5.036,253.6=15.906,則253600=A.50.36 B.503.6 C.159.06 D.1.59067.(2020·湖北省初二期中)已知,則____.8.(2020·黑龍江興安·塔河縣第三中學初二期末)已知:,,則等于_________.9.(2020·北京交通大學附屬中學初二月考)據(jù)說我國著名數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:一個數(shù)是59319,希望求出它的立方根.華羅庚脫口而出:39.鄰座的乘客十分驚奇,忙問計算的奧妙.你知道華羅庚是怎樣計算的嗎?請按照下面的問題試一試:(1)由,試確定是__________位數(shù);(2)由19683個位數(shù)是3,試確定個位數(shù)是________________;(3)如果劃去19683后面的三位數(shù)683得到數(shù)19,而,由此你能確定十位的數(shù)字是___________;(4)用上述方法確定110592的立方根是_______________.題型5平方根與立方根的綜合應用解題技巧:解決此類問題關鍵是注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.立方根的性質(zhì):一個正數(shù)的立方根是正數(shù),一個負數(shù)的立方根是負數(shù),0的立方根式0.1.(2020·重慶初二月考)(1)已知的平方根是,的算術(shù)平方根是4,求的值;(2)若與是同一個正數(shù)的平方根,求的值.2.(2020·廣東金平初二期末)若一正數(shù)的平方根分別是和,則這個正數(shù)是__________.3.(2021春?甘肅期末)如果A=a-2b+3a+3b為a+3b的算術(shù)平方根,B=2a-b-11-a2為1﹣a2的立方根,求4.(2021春?渝中區(qū)校級期中)已知:a與2b互為相反數(shù),a﹣b的算術(shù)平方根是3;(1)求a、b的值;(2)若|2a+c|+b-d=0,求c3+d﹣5.(2020·克東縣乾豐鎮(zhèn)中學初二期中)已知是27的立方根,的算術(shù)平方根是4,求平方根.6.(2020·江西石城·)已知的平方根是,的算術(shù)平方根為。(1)求與的值;(2)求的立方根.題型6算術(shù)平方根和立方根的實際應用解題技巧:=1\*GB3①與普通應用題列寫方程的過程相似,再按照算術(shù)平方根的特性解方程。=2\*GB3②按照正常方程思路,首先設未知數(shù),列等式方程;再求解未知數(shù);最后回答題干問題。1.(2021春?武昌區(qū)期中)如圖,用兩個邊長為5cm的小正方形拼成一個大的正方形.(1)求大正方形的邊長;(2)若沿此大正方形邊長的方向剪出一個長方形,能否使剪出的長方形紙片的長寬之比為4:3,且面積為48cm2?2.(2021春?越秀區(qū)校級期中)如圖,有一個面積為400cm2的正方形.(1)正方形的邊長是多少?(2)若沿此正方形邊的方向剪出一個長方形,能否使剪出的長方形紙片的長寬之比為5:4,且面積為360cm2?若能,試求出剪出的長方形紙片的長與寬;若不能,試說明.3.(2021春?天心區(qū)月考)某市在招商引資期間,把已倒閉的油泵廠出租給外地某投資商,該投資商為減少固定資產(chǎn)投資,將原來的400m2的正方形場地改建成300m2的長方形場地,且其長、寬的比為5:3.(1)求原來正方形場地的周長.(2)如果把原來的正方形場地的鐵柵欄圍墻全部利用,圍成新場地的長方形圍墻,那么這些鐵柵欄是否夠用?試利用所學知識說明理由.4.(2021春?江岸區(qū)期中)列方程解應用題小麗給了小明一張長方形的紙片,告訴他,紙片的長寬之比為3:2,紙片面積為294cm2.(1)請你幫小明求出紙片的周長.(2)小明想利用這張紙片裁出一張面積為157cm2的完整圓形紙片,他能夠裁出想要的圓形紙片嗎?請說明理由.(π取3.14)5.(2021春?瑤海區(qū)校級期中)已知一個正方體的體積是729cm3,現(xiàn)在要在它的8個角上分別截去8個大小相同的小正方體,使得余下的體積是665cm3,則截去的每個小正方體的棱長是()A.8cm B.6cm C.4cm D.2cm6.(2020秋?石阡縣期末)一個正方體木塊的體積是343cm3,現(xiàn)將他鋸成8塊同樣大小的小正方體木塊,則每個小正方體的木塊的表面積是.7.(2021春?靜海區(qū)月考)在一個長、寬、高分別為8cm,4cm,2cm的長方體容器中裝滿水,將容器中的水全部倒入一個正方體容器中,恰好倒?jié)M(兩容器的厚度忽略不計),求此正方體容器的棱長.8.(2021春?福州期末)如圖,有一塊正方形鐵皮,從四個頂點處分別剪掉一個面積為25cm2的正方形后,所剩部分正好圍成一個無蓋的長方體容器,量得該容器的體積是180cm3,求原正方形鐵皮的邊長.題型7無理數(shù)的辨別及網(wǎng)格中的無理數(shù)解題技巧:=1\*GB3①無理數(shù)與有理數(shù)的和、差仍是無理數(shù),無理數(shù)與非零有理數(shù)的積、商仍是無理數(shù);=2\*GB3②無理數(shù)與無理數(shù)的和、差、商、積不一定是無理數(shù);=3\*GB3③帶根號的不一定是無理數(shù);=4\*GB3④通常含π和無法開方(開立方)的數(shù)是無理數(shù),其他數(shù)為有理數(shù)。1.(2020·云南官渡初二期末)下列實數(shù)﹣,0.16,,π,,中無理數(shù)有()A.2個 B.3個 C.4個 D.5個2.(2020·黑龍江甘南初二期末)在下列各數(shù)中:,3.1415926,,﹣,,,0.5757757775…(相鄰兩個5之間的7的個數(shù)逐次加1),無理數(shù)有()個.A.1 B.2 C.3 D.43.(2021·全國初二課時練習)如圖,我們可以在網(wǎng)格圖中以這樣的方式畫出面積為5的正方形,(1)請問它的邊長是有理數(shù)嗎?(2)你能用類似的方法畫出面積為8和面積為13的正方形嗎?4.(2020·浙江西湖·初二期末)在下列網(wǎng)格中分別畫出一個符合條件的直角三角形,要求三角形的頂點均在格點上,且滿足:(1)三邊均為有理數(shù);(2)其中只有一邊為無理數(shù).5.(2019·全國初二課時練習)如圖,每個小正方形的邊長均為1,四邊形ABCD中AC,BD相交于點O,試說明邊AB,BC,CD,AD的長度和對角線AC,BD的長度中,哪些是有理數(shù)?哪些不是有理數(shù)?6.(2021·全國初二課時練習)將下列各數(shù)填在相應的集合里.,π,3.1415926,﹣0.456,3.030030003…(相鄰的兩個3之間0的個數(shù)逐漸增加),0,,,,.有理數(shù)集合:{};無理數(shù)集合:{};正實數(shù)集合:{};整數(shù)集合:{}.題型8實數(shù)與數(shù)軸的對應關系-數(shù)形結(jié)合解題技巧:實數(shù)與數(shù)軸上的點是一一對應的,即每一個實數(shù)都可以用數(shù)軸上的一個點表示,數(shù)軸上的每一個點都表示一個實數(shù)。在解決此類問題時,要弄清楚實數(shù)在數(shù)軸上的位置,根據(jù)位置關系進行分析求解。1.(2020·郁南縣蔡朝焜紀念中學初二月考)實數(shù)a,b在數(shù)軸上的位置如圖所示,化簡:2.(2020·全國初二單元測試)在數(shù)軸上點A表示的數(shù)是.(1)若把點A向左平移2個單位得到點為B,則點B表示的數(shù)是什么?(2)點C和(1)中的點B所表示的數(shù)互為相反數(shù),點C表示的數(shù)是什么?(3)求出線段OA,OB,OC的長度之和.3.(2020·河北省初二月考)如圖,將面積為3的正方形放在數(shù)軸上,以表示實數(shù)1的點為圓心,正方形的邊長為半徑,作圓交數(shù)軸于點、.①線段_______;②點表示的數(shù)為______.4.(2020·廣西壯族自治區(qū)初二期中)我們在學習“實數(shù)”時畫了這樣一個圖,即“以數(shù)軸上的單位長為‘1’的線段作一個正方形,然后以原點O為圓心,正方形的對角線長為半徑畫弧交數(shù)軸于點A”,請根據(jù)圖形回答下列問題:(1)線段OA的長度是多少?(要求寫出求解過程)(2)這個圖形的目的是為了說明什么?(3)這種研究和解決問題的方式體現(xiàn)了的數(shù)學思想方法.(將下列符合的選項序號填在橫線上)A.數(shù)形結(jié)合B.代入C.換元D.歸納5.(2020·武漢七一華源中學初二月考)如圖,點A表示,一只螞蟻從點A沿數(shù)軸向右直爬2.5個單位到達點B,設點B所表示的數(shù)為m,且n+2.5的平方根是0.
(1)求m、n的值;(2)求???4????1+的值.題型9實數(shù)的估算與比較大小解題技巧:要估算3a的近似值,第一步先確定估算數(shù)的整數(shù)范圍,如23<10<33,所以2<310<1.(2020·鹽城市鹽都區(qū)實驗初中初二月考)(1)比較大小:+1(填“>”、“<”或者“=”)(2)其實我們可以利用三角形的知識在方格紙上畫圖驗證⑴的結(jié)果,請在圖①中畫出相應的圖形(設小正方形的邊長為1),(3)請用(2)中的方法在圖②中畫圖比較大?。?.(2020·云南巍山初二期末)一個正方形的面積是15,估計它的邊長大小在()A.2與3之間 B.3與4之間 C.4與5之間 D.5與6之間3.(2020·重慶初二期末)黃金分割數(shù)是一個很奇妙的數(shù),大量應用于藝術(shù)、建筑和統(tǒng)計決策等方面,請你估算﹣1的值()A.在1.1和1.2之間B.在1.2和1.3之間C.在1.3和1.4之間D.在1.4和1.5之間4.(2021·江蘇省初二期中)閱讀理解∵在,即,∴.∴的整數(shù)部分為1,小數(shù)部分為.解決問題已知是的整數(shù)部分,是的小數(shù)部分,求的平方根.5.(2020·云南昆
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同終止訴訟書范例大全
- 承包合同補充協(xié)議范本
- 9《古代科技耀我中華》(教學設計)-部編版道德與法治五年級上冊
- 餐飲空間設計合同范本
- 寧波建設用地使用權(quán)出讓合同范本
- 涉外企業(yè)外匯借款合同范本
- 裝修工程合同家庭居室版
- 8《同學相伴》教學設計-2024-2025學年道德與法治三年級上冊統(tǒng)編版
- 6 將相和 第一課時 教學設計-2024-2025學年語文五年級上冊統(tǒng)編版
- 車輛借用合同書
- 2025年02月黃石市殘聯(lián)專門協(xié)會公開招聘工作人員5人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2024-2025學年第二學期開學典禮-開學典禮校長致辭
- 網(wǎng)絡保險風險評估-洞察分析
- 2025-2030年中國旅居康養(yǎng)行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 食品檢驗員聘用合同樣本
- 六年級信息技術(shù)下冊教學計劃
- 2025年九年級數(shù)學中考復習計劃
- 《汽車專業(yè)英語》2024年課程標準(含課程思政設計)
- 《物料擺放規(guī)范》課件
- 2024年資助政策主題班會課件
- 《煙花效果及制作》課件
評論
0/150
提交評論