湖南邵陽市城區(qū)2024屆中考數(shù)學(xué)四模試卷含解析_第1頁
湖南邵陽市城區(qū)2024屆中考數(shù)學(xué)四模試卷含解析_第2頁
湖南邵陽市城區(qū)2024屆中考數(shù)學(xué)四模試卷含解析_第3頁
湖南邵陽市城區(qū)2024屆中考數(shù)學(xué)四模試卷含解析_第4頁
湖南邵陽市城區(qū)2024屆中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南邵陽市城區(qū)2024學(xué)年中考數(shù)學(xué)四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.為了大力宣傳節(jié)約用電,某小區(qū)隨機抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關(guān)于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.52.實數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<03.如圖,反比例函數(shù)y=-4x的圖象與直線y=-1A.8B.6C.4D.24.如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l5.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點,連接DF,F(xiàn)E,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.116.若關(guān)于x的不等式組無解,則a的取值范圍是()A.a(chǎn)≤﹣3 B.a(chǎn)<﹣3 C.a(chǎn)>3 D.a(chǎn)≥37.如圖,已知拋物線和直線.我們約定:當x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當x>2時,M=y2;②當x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x="1".其中正確的有A.1個 B.2個 C.3個 D.4個8.如圖,已知函數(shù)與的圖象在第二象限交于點,點在的圖象上,且點B在以O(shè)點為圓心,OA為半徑的上,則k的值為A. B. C. D.9.已知關(guān)于x的不等式3x﹣m+1>0的最小整數(shù)解為2,則實數(shù)m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤710.如圖,在菱形ABCD中,AB=BD,點E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.11.計算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.312.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若點A(1,m)在反比例函數(shù)y=的圖象上,則m的值為________.14.拋物線(為非零實數(shù))的頂點坐標為_____________.15.在中,::1:2:3,于點D,若,則______16.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=40°,則∠OAC=____度.17.如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn.當n≥2時,Sn﹣Sn﹣1=▲.18.如圖,直線a∥b,∠l=60°,∠2=40°,則∠3=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點P的縱坐標為2時,求點P的橫坐標;(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.20.(6分)某商場計劃從廠家購進甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數(shù)是乙種電冰箱臺數(shù)的2倍.具體情況如下表:甲種乙種丙種進價(元/臺)120016002000售價(元/臺)142018602280經(jīng)預(yù)算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數(shù)不超過丙種電冰箱的臺數(shù).為獲得最大利潤,應(yīng)分別購進甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?21.(6分)某高中進行“選科走班”教學(xué)改革,語文、數(shù)學(xué)、英語三門為必修學(xué)科,另外還需從物理、化學(xué)、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學(xué)科中任選三門,現(xiàn)對該校某班選科情況進行調(diào)查,對調(diào)查結(jié)果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,完成下列問題:該班共有學(xué)生人;請將條形統(tǒng)計圖補充完整;該班某同學(xué)物理成績特別優(yōu)異,已經(jīng)從選修學(xué)科中選定物理,還需從余下選修學(xué)科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學(xué)恰好選中化學(xué)、歷史兩科的概率.22.(8分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.求每件甲種、乙種玩具的進價分別是多少元?商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?23.(8分)計算:﹣﹣|4sin30°﹣|+(﹣)﹣124.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?25.(10分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.(1)求雙曲線解析式;(2)點P在x軸上,如果△ACP的面積為5,求點P的坐標.26.(12分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.27.(12分)如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.(1)試探究線段AE與CG的關(guān)系,并說明理由.(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=1.①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關(guān)系,并說明理由.②當△CDE為等腰三角形時,求CG的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計算公式分別對每一項進行分析,即可得出答案.【題目詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項錯誤;

B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項錯誤;

C、把這些數(shù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項正確;

D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;

故選:C.【題目點撥】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.2、B【解題分析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項正確,不符合題意;B、a的相反數(shù)≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數(shù)與數(shù)軸.3、A【解題分析】試題解析:由于點A、B在反比例函數(shù)圖象上關(guān)于原點對稱,則△ABC的面積=2|k|=2×4=1.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義.4、D【解題分析】∵△ABC繞點A順時針旋轉(zhuǎn)45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【題目點撥】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)等知識,得出AD,AF,DC′的長是解題關(guān)鍵.5、B【解題分析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.6、A【解題分析】【分析】利用不等式組取解集的方法,根據(jù)不等式組無解求出a的取值范圍即可.【題目詳解】∵不等式組無解,∴a﹣4≥3a+2,解得:a≤﹣3,故選A.【題目點撥】本題考查了一元一次不等式組的解集,熟知一元一次不等式組的解集的確定方法“同大取大、同小取小、大小小大中間找、大大小小無處找”是解題的關(guān)鍵.7、B【解題分析】試題分析:∵當y1=y2時,即時,解得:x=0或x=2,∴由函數(shù)圖象可以得出當x>2時,y2>y1;當0<x<2時,y1>y2;當x<0時,y2>y1.∴①錯誤.∵當x<0時,-直線的值都隨x的增大而增大,∴當x<0時,x值越大,M值越大.∴②正確.∵拋物線的最大值為4,∴M大于4的x值不存在.∴③正確;∵當0<x<2時,y1>y2,∴當M=2時,2x=2,x=1;∵當x>2時,y2>y1,∴當M=2時,,解得(舍去).∴使得M=2的x值是1或.∴④錯誤.綜上所述,正確的有②③2個.故選B.8、A【解題分析】

由題意,因為與反比例函數(shù)都是關(guān)于直線對稱,推出A與B關(guān)于直線對稱,推出,可得,求出m即可解決問題;【題目詳解】函數(shù)與的圖象在第二象限交于點,點與反比例函數(shù)都是關(guān)于直線對稱,與B關(guān)于直線對稱,,,點故選:A.【題目點撥】本題考查反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的圖像與性質(zhì),圓的對稱性及軸對稱的性質(zhì).解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關(guān)于直線對稱.9、A【解題分析】

先解出不等式,然后根據(jù)最小整數(shù)解為2得出關(guān)于m的不等式組,解之即可求得m的取值范圍.【題目詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數(shù)解2,∴1≤<2,解得:4≤m<7,故選A.【題目點撥】本題考查了一元一次不等式的整數(shù)解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關(guān)鍵.10、D【解題分析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.11、C【解題分析】【分析】根據(jù)合并同類項法則進行計算即可得.【題目詳解】3a2-a2=(3-1)a2=2a2,故選C.【題目點撥】本題考查了合并同類項,熟記合并同類項的法則是解題的關(guān)鍵.合并同類項就是把同類項的系數(shù)相加減,字母和字母的指數(shù)不變.12、D【解題分析】

解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【題目點撥】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術(shù)平均數(shù),掌握概念正確計算是關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解題分析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.14、【解題分析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標.【題目詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標為(-1,1-m),故答案為(-1,1-m).【題目點撥】本題考查了拋物線的頂點坐標,把拋物線的解析式轉(zhuǎn)化為頂點式是解題的關(guān)鍵.15、2.1【解題分析】

先求出△ABC是∠A等于30°的直角三角形,再根據(jù)30°角所對的直角邊等于斜邊的一半求解.【題目詳解】解:根據(jù)題意,設(shè)∠A、∠B、∠C為k、2k、3k,則k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案為2.1.【題目點撥】本題主要考查含30度角的直角三角形的性質(zhì)和三角形內(nèi)角和定理,掌握30°角所對的直角邊等于斜邊的一半、求出△ABC是直角三角形是解本題的關(guān)鍵.16、50【解題分析】

根據(jù)BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據(jù)半徑相等所對應(yīng)的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【題目詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【題目點撥】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關(guān)鍵17、【解題分析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當AB=n時,△AME的面積為,當AB=n-1時,△AME的面積為.∴當n≥2時,18、80°【解題分析】

根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計算即可.【題目詳解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案為:80°.【題目點撥】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)二次函數(shù)的解析式為,頂點坐標為(–1,4);(2)點P橫坐標為––1;(3)當時,四邊形PABC的面積有最大值,點P().【解題分析】試題分析:(1)已知拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點式,直接寫出頂點坐標即可;(2)把y=2代入解析式,解方程求得x的值,即可得點P的橫坐標,從而求得點P的坐標;(3)設(shè)點P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點P的坐標.試題解析:(1)∵拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點坐標為(﹣1,4)(2)設(shè)點P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點P(﹣﹣1,2).(3)設(shè)點P(,),則,,∴=∴當時,四邊形PABC的面積有最大值.所以點P().點睛:本題是二次函數(shù)綜合題,主要考查學(xué)生對二次函數(shù)解決動點問題綜合運用能力,動點問題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類問題要會建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問題.20、(1)商場至少購進乙種電冰箱14臺;(2)商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【解題分析】

(1)設(shè)商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據(jù)“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據(jù)“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關(guān)于x的函數(shù)解析式,結(jié)合x的取值范圍,利用一次函數(shù)的性質(zhì)求解可得.【題目詳解】(1)設(shè)商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據(jù)題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【題目點撥】本題主要考查一次函數(shù)的應(yīng)用與一元一次不等式的應(yīng)用,解題的關(guān)鍵是理解題意找到題目蘊含的不等關(guān)系和相等關(guān)系,并據(jù)此列出不等式與函數(shù)解析式.21、(1)50人;(2)補圖見解析;(3).【解題分析】分析:(1)根據(jù)化學(xué)學(xué)科人數(shù)及其所占百分比可得總?cè)藬?shù);(2)根據(jù)各學(xué)科人數(shù)之和等于總?cè)藬?shù)求得歷史的人數(shù)即可;(3)列表得出所有等可能結(jié)果,從中找到恰好選中化學(xué)、歷史兩科的結(jié)果數(shù),再利用概率公式計算可得.詳解:(1)該班學(xué)生總數(shù)為10÷20%=50人;(2)歷史學(xué)科的人數(shù)為50﹣(5+10+15+6+6)=8人,補全圖形如下:(3)列表如下:化學(xué)生物政治歷史地理化學(xué)生物、化學(xué)政治、化學(xué)歷史、化學(xué)地理、化學(xué)生物化學(xué)、生物政治、生物歷史、生物地理、生物政治化學(xué)、政治生物、政治歷史、政治地理、政治歷史化學(xué)、歷史生物、歷史政治、歷史地理、歷史地理化學(xué)、地理生物、地理政治、地理歷史、地理由表可知,共有20種等可能結(jié)果,其中該同學(xué)恰好選中化學(xué)、歷史兩科的有2種結(jié)果,所以該同學(xué)恰好選中化學(xué)、歷史兩科的概率為.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.22、(1)甲,乙兩種玩具分別是15元/件,1元/件;(2)共有四種方案.【解題分析】

(1)設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據(jù)已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同可列方程求解.(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據(jù)甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.【題目詳解】解:設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,x=15,經(jīng)檢驗x=15是原方程的解.∴40﹣x=1.甲,乙兩種玩具分別是15元/件,1元/件;(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,,解得20≤y<2.因為y是整數(shù),甲種玩具的件數(shù)少于乙種玩具的件數(shù),∴y取20,21,22,23,共有4種方案.考點:分式方程的應(yīng)用;一元一次不等式組的應(yīng)用.23、﹣4﹣1.【解題分析】

先逐項化簡,再合并同類項或同類二次根式即可.【題目詳解】解:原式=﹣3﹣(﹣2)﹣12=﹣3﹣+2﹣12=﹣4﹣1.【題目點撥】本題考查了實數(shù)的混合運算,熟練掌握特殊角的三角函數(shù)值,二次根式的性質(zhì)以及負整數(shù)指數(shù)冪的意義是解答本題的關(guān)鍵.24、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解題分析】

(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【題目詳解】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數(shù),所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【題目點撥】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊含的數(shù)量關(guān)系,列出方程組或不等式組解決問題.25、(1);(2)(,0)或【解題分析】

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論