2024屆江蘇省泰興市洋思中學中考三模數(shù)學試題含解析_第1頁
2024屆江蘇省泰興市洋思中學中考三模數(shù)學試題含解析_第2頁
2024屆江蘇省泰興市洋思中學中考三模數(shù)學試題含解析_第3頁
2024屆江蘇省泰興市洋思中學中考三模數(shù)學試題含解析_第4頁
2024屆江蘇省泰興市洋思中學中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024學年江蘇省泰興市洋思中學中考三模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F(xiàn),則DE的長是()A. B. C.1 D.2.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.33.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A. B. C. D.4.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°5.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°6.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元7.計算3–(–9)的結果是()A.12 B.–12 C.6 D.–68.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉動后,5點朝上是必然事件B.明天下雪的概率為,表示明天有半天都在下雪C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.了解一批充電寶的使用壽命,適合用普查的方式9.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.210.兩個一次函數(shù),,它們在同一直角坐標系中的圖象大致是()A. B. C. D.11.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數(shù)有()A.1個B.2個C.3個D.4個12.根據(jù)總書記在“一帶一路”國際合作高峰論壇開幕式上的演講,中國將在未來3年向參與“一帶一路”建設的發(fā)展中國家和國際組織提供60000000000元人民幣援助,建設更多民生項目,其中數(shù)據(jù)60000000000用科學記數(shù)法表示為()A.0.6×1010 B.0.6×1011 C.6×1010 D.6×1011二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一組數(shù)據(jù)4,3,5,x,4,5的眾數(shù)和中位數(shù)都是4,則x=_____.14.在?ABCD中,AB=3,BC=4,當?ABCD的面積最大時,下列結論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號)15.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用_____秒鐘.16.如圖,△ABC中,AB=BD,點D,E分別是AC,BD上的點,且∠ABD=∠DCE,若∠BEC=105°,則∠A的度數(shù)是_____.17.用換元法解方程,設y=,那么原方程化為關于y的整式方程是_____.18.大自然是美的設計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么PB的長度為__________cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.20.(6分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;21.(6分)如圖,在四邊形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度數(shù);四邊形ABCD的面積(結果保留根號).22.(8分)計算:÷(﹣1)23.(8分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).24.(10分)如圖,分別以線段AB兩端點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點,作直線CD交AB于點M,DE∥AB,BE∥CD.(1)判斷四邊形ACBD的形狀,并說明理由;(2)求證:ME=AD.25.(10分)如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)的圖象于點B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.26.(12分)某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,商品名稱甲乙進價(元/件)80100售價(元/件)160240設其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設計出使該商場獲得最大利潤的進貨方案.27.(12分)如圖,平面直角坐標系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設P(1,n).求直線AB的解析式和點B的坐標;求△ABP的面積(用含n的代數(shù)式表示);當S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】

過F作FH⊥AE于H,根據(jù)矩形的性質得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質得到AF=CE,根據(jù)相似三角形的性質得到,于是得到AE=AF,列方程即可得到結論.【題目詳解】解:如圖:解:過F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.【題目點撥】本題主要考查平行四邊形的性質及三角形相似,做合適的輔助線是解本題的關鍵.2、B【解題分析】【分析】依據(jù)點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【題目詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【題目點撥】本題主要考查了反比例函數(shù)圖象上點的坐標特征,注意反比例函數(shù)圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.3、D【解題分析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關鍵.4、D【解題分析】

根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質和平行四邊形的性質可得解.【題目詳解】根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質可得∠ADC=∠B=54°.故選D【題目點撥】本題考查了平行四邊形的性質、圓的基本性質.5、A【解題分析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.6、C【解題分析】

用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【題目詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【題目點撥】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.7、A【解題分析】

根據(jù)有理數(shù)的減法,即可解答.【題目詳解】故選A.【題目點撥】本題考查了有理數(shù)的減法,解決本題的關鍵是熟記減去一個數(shù)等于加上這個數(shù)的相反數(shù).8、C【解題分析】

根據(jù)必然事件、不可能事件、隨機事件的概念、方差和普查的概念判斷即可.【題目詳解】A.擲一枚均勻的骰子,骰子停止轉動后,5點朝上是隨機事件,錯誤;B.“明天下雪的概率為”,表示明天有可能下雪,錯誤;C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,正確;D.了解一批充電寶的使用壽命,適合用抽查的方式,錯誤;故選:C【題目點撥】考查方差,全面調(diào)查與抽樣調(diào)查,隨機事件,概率的意義,比較基礎,難度不大.9、B【解題分析】

首先求得AB的中點D的坐標,然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【題目詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.

故選:B【題目點撥】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.10、B【解題分析】

根據(jù)各選項中的函數(shù)圖象判斷出a、b的符號,然后分別確定出兩直線經(jīng)過的象限以及與y軸的交點位置,即可得解.【題目詳解】解:由圖可知,A、B、C選項兩直線一條經(jīng)過第一三象限,另一條經(jīng)過第二四象限,

所以,a、b異號,

所以,經(jīng)過第一三象限的直線與y軸負半軸相交,經(jīng)過第二四象限的直線與y軸正半軸相交,

B選項符合,

D選項,a、b都經(jīng)過第二、四象限,

所以,兩直線都與y軸負半軸相交,不符合.

故選:B.【題目點撥】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b(k≠0),k>0時,一次函數(shù)圖象經(jīng)過第一三象限,k<0時,一次函數(shù)圖象經(jīng)過第二四象限,b>0時與y軸正半軸相交,b<0時與y軸負半軸相交.11、D【解題分析】

根據(jù)對頂角的定義,平行線的性質以及正五邊形的內(nèi)角及鑲嵌的知識,逐一判斷.【題目詳解】解:①對頂角有位置及大小關系的要求,相等的角不一定是對頂角,故為假命題;②只有當兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內(nèi)角和為540°,則其內(nèi)角為108°,而360°并不是108°的整數(shù)倍,不能進行平面鑲嵌,故為假命題;④在同一平面內(nèi),垂直于同一條直線的兩條直線平行,故為假命題.故選:D.【題目點撥】本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關概念.關鍵是熟悉這些概念,正確判斷.12、C【解題分析】

解:將60000000000用科學記數(shù)法表示為:6×1.故選C.【題目點撥】本題考查科學記數(shù)法—表示較大的數(shù),掌握科學計數(shù)法的一般形式是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),由此可得出答案.【題目詳解】∵一組數(shù)據(jù)1,3,5,x,1,5的眾數(shù)和中位數(shù)都是1,∴x=1,故答案為1.【題目點撥】本題考查了眾數(shù)的知識,解答本題的關鍵是掌握眾數(shù)的定義.14、①②④【解題分析】

由當?ABCD的面積最大時,AB⊥BC,可判定?ABCD是矩形,由矩形的性質,可得②④正確,③錯誤,又由勾股定理求得AC=1.【題目詳解】∵當?ABCD的面積最大時,AB⊥BC,∴?ABCD是矩形,

∴∠A=∠C=90°,AC=BD,故③錯誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【題目點撥】此題考查了平行四邊形的性質、矩形的判定與性質以及勾股定理.注意證得?ABCD是矩形是解此題的關鍵.15、2.5秒.【解題分析】

把此正方體的點A所在的面展開,然后在平面內(nèi),利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【題目詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【題目點撥】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.16、85°【解題分析】

設∠A=∠BDA=x,∠ABD=∠ECD=y,構建方程組即可解決問題.【題目詳解】解:∵BA=BD,∴∠A=∠BDA,設∠A=∠BDA=x,∠ABD=∠ECD=y(tǒng),則有,解得x=85°,故答案為85°.【題目點撥】本題考查等腰三角形的性質,三角形的外角的性質,三角形的內(nèi)角和定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.17、6y2-5y+2=0【解題分析】

根據(jù)y=,將方程變形即可.【題目詳解】根據(jù)題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【題目點撥】此題考查了換元法解分式方程,利用了整體的思想,將方程進行適當?shù)淖冃问墙獗绢}的關鍵.18、(15﹣5)【解題分析】

先利用黃金分割的定義計算出AP,然后計算AB-AP即得到PB的長.【題目詳解】∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案為(15﹣5).【題目點撥】本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.其中AC=AB.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(1)【解題分析】

(1)連接OE交DF于點H,由切線的性質得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據(jù)對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據(jù)∠CBE=∠DOH,從而即可得證;(1)依據(jù)圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數(shù)的定義求出OH的值,進一步求得HE的值,利用銳角三角函數(shù)的定義進一步求得EF的值.【題目詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【題目點撥】本題主要考查切線的性質及直角三角形的性質、圓周角定理及三角函數(shù)的應用,掌握圓周角定理和切線的性質是解題的關鍵.20、1.【解題分析】分析:本題涉及乘方、負指數(shù)冪、二次根式化簡、絕對值和特殊角的三角函數(shù)5個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.詳解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1.點睛:本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對值等考點的運算.21、(1);(2)【解題分析】

(1)連接AC,由勾股定理求出AC的長,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,進而可求出∠BAD的度數(shù);

(2)由(1)可知△ABC和△ADC是Rt△,再根據(jù)S四邊形ABCD=S△ABC+S△ADC即可得出結論.【題目詳解】解:(1)連接AC,如圖所示:∵AB=BC=1,∠B=90°∴AC=,又∵AD=1,DC=,∴AD2+AC2=3CD2=()2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四邊形ABCD=S△ABC+S△ADC=1×1×+1××=.【題目點撥】考查的是勾股定理、勾股定理的逆定理及三角形的面積,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.22、【解題分析】

根據(jù)分式的混合運算法則把原式進行化簡即可.【題目詳解】原式=÷(﹣)=÷=?=.【題目點撥】本題考查的是分式的混合運算,熟知分式的混合運算的法則是解答此題的關鍵.23、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解題分析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.24、(1)四邊形ACBD是菱形;理由見解析;(2)證明見解析.【解題分析】

(1)根據(jù)題意得出,即可得出結論;(2)先證明四邊形是平行四邊形,再由菱形的性質得出,證明四邊形是矩形,得出對角線相等,即可得出結論.【題目詳解】(1)解:四邊形ACBD是菱形;理由如下:根據(jù)題意得:AC=BC=BD=AD,∴四邊形ACBD是菱形(四條邊相等的四邊形是菱形);(2)證明:∵DE∥AB,BE∥CD,∴四邊形BEDM是平行四邊形,∵四邊形ACBD是菱形,∴AB⊥CD,∴∠BMD=90°,∴四邊形ACBD是矩形,∴ME=BD,∵AD=BD,∴ME=AD.【題目點撥】本題考查了菱形的判定、矩形的判定與性質、平行四邊形的判定,熟練掌握菱形的判定和矩形的判定與性質,并能進行推理結論是解決問題的關鍵.25、(1);(2)P在第二象限,Q在第三象限.【解題分析】試題分析:(1)求出點B坐標即可解決問題;(2)結論:P在第二象限,Q在第三象限.利用反比例函數(shù)的性質即可解決問題;試題解析:解:(1)由題意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函數(shù)的解析式為.(2)結論:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函數(shù)y在每個象限y隨x的增大而增大,∵P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.點睛:此題考查待定系數(shù)法、反比例函數(shù)的性質、坐標與圖形的變化等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.26、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應購進甲商品120件,乙商品80件,獲利最大【解題分析】分析:(1)根據(jù)總利潤=(甲的售價-甲的進價)×購進甲的數(shù)量+(乙的售價-乙的進價)×購進乙的數(shù)量代入列關系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當50<a<60時,a﹣60<0,y隨x的增大而減小,∴當x=100時,y有最大利潤,即商場應購進甲商品100件,乙商品100件,獲利最大,②當a=60時,a﹣60=0,y=28000,即商場應購進甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時,獲利最大,③當60<a<70時,a﹣60>0,y隨x的增大而增大,∴當x=120時,y有最大利潤,即商場應購進甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數(shù)和一元一次不等式的綜合應用,屬于銷售利潤問題,在此類題中,要明確售價、進價、利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論