2024屆那曲市市級名校中考考前最后一卷數(shù)學試卷含解析_第1頁
2024屆那曲市市級名校中考考前最后一卷數(shù)學試卷含解析_第2頁
2024屆那曲市市級名校中考考前最后一卷數(shù)學試卷含解析_第3頁
2024屆那曲市市級名校中考考前最后一卷數(shù)學試卷含解析_第4頁
2024屆那曲市市級名校中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆那曲市市級名校中考考前最后一卷數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.我省2013年的快遞業(yè)務量為1.2億件,受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展,2012年增速位居全國第一.若2015年的快遞業(yè)務量達到2.5億件,設2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.52.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是()A.30° B.25°C.20° D.15°3.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.4.已知拋物線y=(x﹣)(x﹣)(a為正整數(shù))與x軸交于Ma、Na兩點,以MaNa表示這兩點間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.5.工信部發(fā)布《中國數(shù)字經(jīng)濟發(fā)展與就業(yè)白皮書(2018)》)顯示,2017年湖北數(shù)字經(jīng)濟總量1.21萬億元,列全國第七位、中部第一位.“1.21萬”用科學記數(shù)法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×1056.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根7.下列運算中,正確的是()A.x2+5x2=6x4 B.x3 C. D.8.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.9.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π10.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.12.如圖,△ABC內(nèi)接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數(shù)為_______°.13.如圖,扇形的半徑為,圓心角為120°,用這個扇形圍成一個圓錐的側(cè)面,所得的圓錐的高為______.14.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm15.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉(zhuǎn)一周.當△DCE一邊與AB平行時,∠ECB的度數(shù)為_________________________.16.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是_____.三、解答題(共8題,共72分)17.(8分)對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規(guī)作圖)18.(8分)先化簡,再求值:,其中.19.(8分)某單位為了擴大經(jīng)營,分四次向社會進行招工測試,測試后對成績合格人數(shù)與不合格人數(shù)進行統(tǒng)計,并繪制成如圖所示的不完整的統(tǒng)計圖.(1)測試不合格人數(shù)的中位數(shù)是.(2)第二次測試合格人數(shù)為50人,到第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,若這兩次測試的平均增長率相同,求平均增長率;(3)在(2)的條件下補全條形統(tǒng)計圖和扇形統(tǒng)計圖.20.(8分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.21.(8分)經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個十字路口.(1)試用樹形圖或列表法中的一種列舉出這兩輛汽車行駛方向所有可能的結(jié)果;并計算兩輛汽車都不直行的概率.(2)求至少有一輛汽車向左轉(zhuǎn)的概率.22.(10分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;從中任意抽取1個球恰好是紅球的概率是;學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.23.(12分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結(jié)EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求24.如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,求AE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】試題解析:設2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.2、B【解題分析】根據(jù)題意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,3、D【解題分析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.4、C【解題分析】

代入y=0求出x的值,進而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結(jié)論.【題目詳解】解:當y=0時,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【題目點撥】本題考查了拋物線與x軸的交點坐標、二次函數(shù)圖象上點的坐標特征以及規(guī)律型中數(shù)字的變化類,利用二次函數(shù)圖象上點的坐標特征求出MaNa的值是解題的關(guān)鍵.5、C【解題分析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:1.21萬=1.21×104,故選:C.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、B【解題分析】一元二次方程的根的情況與根的判別式有關(guān),,方程有兩個不相等的實數(shù)根,故選B7、C【解題分析】分析:直接利用積的乘方運算法則及合并同類項和同底數(shù)冪的乘除運算法則分別分析得出結(jié)果.詳解:A.x2+5x2=,本項錯誤;B.,本項錯誤;C.,正確;D.,本項錯誤.故選C.點睛:本題主要考查了積的乘方運算及合并同類項和同底數(shù)冪的乘除運算,解答本題的關(guān)鍵是正確掌握運算法則.8、B【解題分析】

解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【題目點撥】本題考查相似三角形的判定及性質(zhì).9、C【解題分析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.10、D【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【題目點撥】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解題分析】

先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到,再根據(jù)相似三角形的面積比等于相似比的平方,得到用含k的代數(shù)式表示3個陰影部分的面積之和,然后根據(jù)三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【題目詳解】解:根據(jù)題意可知,軸,設圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點:反比例函數(shù)綜合題.12、48°【解題分析】

如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內(nèi)接四邊形的性質(zhì)可求出∠AKC的度數(shù),利用圓周角定理可求出∠AOC的度數(shù),由切線性質(zhì)可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【題目詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內(nèi)接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【題目點撥】本題考查圓內(nèi)接四邊形的性質(zhì)、周角定理及切線性質(zhì),圓內(nèi)接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關(guān)知識是解題關(guān)鍵.13、4cm【解題分析】

求出扇形的弧長,除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【題目詳解】扇形的弧長==4π,

圓錐的底面半徑為4π÷2π=2,

故圓錐的高為:=4,

故答案為4cm.【題目點撥】本題考查了圓錐的計算,重點考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.14、15【解題分析】如圖,等腰△ABC的內(nèi)切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內(nèi)切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內(nèi)切圓的半徑為r,則.15、15°、30°、60°、120°、150°、165°【解題分析】分析:根據(jù)CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據(jù)每種情況分別進行計算得出答案,每種情況都會出現(xiàn)銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質(zhì)與判定,屬于中等難度的題型.解決這個問題的關(guān)鍵就是根據(jù)題意得出圖形,然后分兩種情況得出角的度數(shù).16、(0,0)【解題分析】

根據(jù)坐標的平移規(guī)律解答即可.【題目詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).【題目點撥】此題主要考查坐標與圖形變化-平移.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.三、解答題(共8題,共72分)17、(1)①﹣3;②;(2);(3)【解題分析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標即可;(3)根據(jù)題意將點轉(zhuǎn)化為直線,點理想值最大時點在上,分析圖形即可.【題目詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當點在與軸切點時,點的“理想值”最小為0.當點縱坐標與橫坐標比值最大時,的“理想值”最大,此時直線與切于點,設點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設直線與軸、軸的交點分別為點,點,當x=0時,y=3,當y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當與軸相切時,LQ=0,相應的圓心滿足題意,其橫坐標取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當與直線相切時,LQ=,相應的圓心滿足題意,其橫坐標取到最小值.作軸于點,則.設直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(2,m),∴M點在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點N,當M與ON和x軸同時相切時,半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【題目點撥】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時要注意做好數(shù)形結(jié)合,根據(jù)圖形進行分類討論.18、-1,-9.【解題分析】

先去括號,再合并同類項;最后把x=-2代入即可.【題目詳解】原式=,當x=-2時,原式=-8-1=-9.【題目點撥】本題考查了整式的混合運算及化簡求值,關(guān)鍵是先按運算順序把整式化簡,再把對應字母的值代入求整式的值.19、(1)1;(2)這兩次測試的平均增長率為20%;(3)55%.【解題分析】

(1)將四次測試結(jié)果排序,結(jié)合中位數(shù)的定義即可求出結(jié)論;(2)由第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,可求出第四次測試合格人數(shù),設這兩次測試的平均增長率為x,由第二次、第四次測試合格人數(shù),即可得出關(guān)于x的一元二次方程,解之取其中的正值即可得出結(jié)論;(3)由第二次測試合格人數(shù)結(jié)合平均增長率,可求出第三次測試合格人數(shù),根據(jù)不合格總?cè)藬?shù)÷參加測試的總?cè)藬?shù)×100%即可求出不合格率,進而可求出合格率,再將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整,此題得解.【題目詳解】解:(1)將四次測試結(jié)果排序,得:30,40,50,60,∴測試不合格人數(shù)的中位數(shù)是(40+50)÷2=1.故答案為1;(2)∵每次測試不合格人數(shù)的平均數(shù)為(60+40+30+50)÷4=1(人),∴第四次測試合格人數(shù)為1×2﹣18=72(人).設這兩次測試的平均增長率為x,根據(jù)題意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去),∴這兩次測試的平均增長率為20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.補全條形統(tǒng)計圖與扇形統(tǒng)計圖如解圖所示.【題目點撥】本題考查了一元二次方程的應用、扇形統(tǒng)計圖、條形統(tǒng)計圖、中位數(shù)以及算術(shù)平均數(shù),解題的關(guān)鍵是:(1)牢記中位數(shù)的定義;(2)找準等量關(guān)系,正確列出一元二次方程;(3)根據(jù)數(shù)量關(guān)系,列式計算求出統(tǒng)計圖中缺失數(shù)據(jù).20、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解題分析】

(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【題目詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標為(,)或(﹣,).【題目點撥】本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應用,在(2)中用C點坐標表示出△BOC的面積是解題的關(guān)鍵,在(3)中確定出點P的位置,構(gòu)造相似三角形是解題的關(guān)鍵,注意分兩種情況.21、(1);(2).【解題分析】

(1)可以采用列表法或樹狀圖求解.可以得到一共有9種情況,從中找到兩輛汽車都不直行的結(jié)果數(shù),根據(jù)概率公式計算可得;(2)根據(jù)樹狀圖得出至少有一輛汽車向左轉(zhuǎn)的結(jié)果數(shù),根據(jù)概率公式可得答案.【題目詳解】(1)畫“樹形圖”列舉這兩輛汽車行駛方向所有可能的結(jié)果如圖所示:∴這兩輛汽車行駛方向共有9種可能的結(jié)果,其中兩輛汽車都不直行的有4種結(jié)果,所以兩輛汽車都不直行的概率為;(2)由(1)中“樹形圖”知,至少有一輛汽車向左轉(zhuǎn)的結(jié)果有5種,且所有結(jié)果的可能性相等∴P(至少有一輛汽車向左轉(zhuǎn))=.【題目點撥】此題考查了樹狀圖法求概率.解題的關(guān)鍵是根據(jù)題意畫出樹狀圖,再由概率=所求情況數(shù)與總情況數(shù)之比求解.22、(1)必然,不可能;(2);(3)此游戲不公平.【解題分析】

(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【題目詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論