2024屆廣東信宜市高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
2024屆廣東信宜市高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
2024屆廣東信宜市高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
2024屆廣東信宜市高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
2024屆廣東信宜市高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆廣東信宜市高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則與的夾角為()A. B. C. D.2.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.73.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,4.在平面直角坐標系中,經(jīng)過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.5.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.6.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.8.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交9.已知,其中是虛數(shù)單位,則對應(yīng)的點的坐標為()A. B. C. D.10.已知三棱柱()A. B. C. D.11.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.12.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣2二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的常數(shù)項為_______.14.直線過圓的圓心,則的最小值是_____.15.已知函數(shù),則過原點且與曲線相切的直線方程為____________.16.已知實數(shù),滿足則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項和;(2)已知數(shù)列滿足:(?。θ我獾?;(ⅱ)對任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.21.(12分)的內(nèi)角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.22.(10分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由已知向量的坐標,利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.2、B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題3、B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.4、B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.5、B【解析】

由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運算的能力,屬于中檔題.6、A【解析】

利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.7、D【解析】

利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.8、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.9、C【解析】

利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應(yīng)的點的坐標為,,.故選:.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.10、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=11、D【解析】

把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.12、D【解析】

化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復(fù)數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

寫出展開式的通項公式,考慮當?shù)闹笖?shù)為零時,對應(yīng)的值即為常數(shù)項.【詳解】的展開式通項公式為:,令,所以,所以常數(shù)項為.

故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,難度較易.解答問題的關(guān)鍵是,能通過展開式通項公式分析常數(shù)項對應(yīng)的取值.14、【解析】

直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標準方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.15、【解析】

設(shè)切點坐標為,利用導(dǎo)數(shù)求出曲線在切點的切線方程,將原點代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點坐標為,,,,則曲線在點處的切線方程為,由于該直線過原點,則,得,因此,則過原點且與曲線相切的直線方程為,故答案為.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查過點作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點坐標,并利用導(dǎo)數(shù)求出切線方程;(2)將所過點的坐標代入切線方程,求出參數(shù)的值,可得出切點的坐標;(3)將參數(shù)的值代入切線方程,可得出切線的方程.16、【解析】

根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應(yīng)用,由數(shù)形結(jié)合法求線性目標函數(shù)的取值范圍,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①可能是2件;②詳見解析【解析】

(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨立事件的概率公式,列式計算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點睛】本題考查相互獨立事件的概率計算,考查離散型隨機變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計算求解能力,屬于中檔題.18、(I)an=2n-1,bn=【解析】

(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.19、(1)見解析;(2)【解析】

(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌20、(1);(2)①;②證明見解析.【解析】

(1)由條件可得,結(jié)合等差數(shù)列的定義和通項公式、求和公式,即可得到所求;(2)①若,可令,運用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當,,,由等比數(shù)列的定義和不等式的性質(zhì),化簡變形,即可得到所求結(jié)論.【詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項為,公差為的等差數(shù)列,可得,前項和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對任意的,,,,,當,,,可得,即以為首項、為公比的等比數(shù)列;同理可得以為首項、為公比的等比數(shù)列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,故數(shù)列,,,,,,,,,是以為首項,為公比的等比數(shù)列,其中.【點睛】本題考查新定義的理解和運用,考查等差數(shù)列和等比數(shù)列的定義和通項公式的運用,考查分類討論思想方法和推理、運算能力,屬于難題.21、(1)(2)【解析】

(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論