版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省廈門市英才學(xué)校2024屆高三下學(xué)期第六次周練(數(shù)學(xué)試題文)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱2.某校在高一年級(jí)進(jìn)行了數(shù)學(xué)競(jìng)賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競(jìng)賽成績(jī):555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競(jìng)賽成績(jī),運(yùn)行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.123.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.24.一只螞蟻在邊長(zhǎng)為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.5.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.7.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]8.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.9.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.10.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.411.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語文、數(shù)學(xué)、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種12.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若,則___________.14.已知隨機(jī)變量服從正態(tài)分布,,則__________.15.已知數(shù)列的前項(xiàng)滿足,則______.16.已知,為虛數(shù)單位,且,則=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了加強(qiáng)環(huán)保知識(shí)的宣傳,某學(xué)校組織了垃圾分類知識(shí)竟賽活動(dòng).活動(dòng)設(shè)置了四個(gè)箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機(jī)抽取張,按照自己的判斷將每張卡片放入對(duì)應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯(cuò)誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機(jī)抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機(jī)選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學(xué)期望.18.(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時(shí),需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個(gè)數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個(gè)數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過4個(gè),至少需要增加幾名維修工人?(只需寫出結(jié)論)19.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個(gè)極值點(diǎn)為,,求的最小值.20.(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.22.(10分)已知圓,定點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線(1)求曲線的方程(2)過點(diǎn)的直線與交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【題目詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【題目點(diǎn)撥】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.2、D【解題分析】
根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【題目詳解】由題意可得的取值為成績(jī)大于等于90的人數(shù),的取值為成績(jī)大于等于60且小于90的人數(shù),故,,所以.故選:D【題目點(diǎn)撥】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識(shí).3、B【解題分析】由題意或4,則,故選B.4、A【解題分析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【題目詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【題目點(diǎn)撥】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.5、C【解題分析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【題目詳解】因?yàn)?,所以有解,即有解,所以,得,,所以,又因?yàn)椋?,即,可化為,因?yàn)椋缘慕饧?,所以或,解得,故選:C【題目點(diǎn)撥】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,6、C【解題分析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.7、B【解題分析】
作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【題目詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【題目點(diǎn)撥】本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.8、D【解題分析】
設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【題目詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【題目點(diǎn)撥】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、A【解題分析】
設(shè),延長(zhǎng)至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【題目詳解】設(shè),延長(zhǎng)至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【題目點(diǎn)撥】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.10、C【解題分析】
方法一:設(shè),利用拋物線的定義判斷出是的中點(diǎn),結(jié)合等腰三角形的性質(zhì)求得點(diǎn)的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點(diǎn)的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達(dá)定理,由此求得,進(jìn)而求得.【題目詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過定點(diǎn),過分別作于,于,連接,由,則,所以點(diǎn)為的中點(diǎn),又點(diǎn)是的中點(diǎn),則,所以,又所以由等腰三角形三線合一得點(diǎn)的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點(diǎn)橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【題目點(diǎn)撥】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.11、C【解題分析】
分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對(duì)應(yīng)的組合數(shù),即可求出結(jié)果.【題目詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【題目點(diǎn)撥】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于常考題型.12、C【解題分析】
將,分別用和的形式表示,然后求解出和的值即可表示.【題目詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則由,,得解得,,所以.故選C.【題目點(diǎn)撥】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項(xiàng)的值,可通過構(gòu)建和的方程組求通項(xiàng)公式.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【題目詳解】因?yàn)楹瘮?shù),其定義域?yàn)?,所以其定義域關(guān)于原點(diǎn)對(duì)稱,又,所以函數(shù)為奇函數(shù),因?yàn)?,所?故答案為:【題目點(diǎn)撥】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、??碱}型.14、0.22.【解題分析】
正態(tài)曲線關(guān)于x=μ對(duì)稱,根據(jù)對(duì)稱性以及概率和為1求解即可?!绢}目詳解】【題目點(diǎn)撥】本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,是一個(gè)基礎(chǔ)題.15、【解題分析】
由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時(shí)要注意的求解方法.【題目詳解】∵①,∴時(shí),②,①-②得,∴,又,∴().故答案為:.【題目點(diǎn)撥】本題考查求數(shù)列通項(xiàng)公式,由已知條件.類比已知求的解題方法求解.16、4【解題分析】
解:利用復(fù)數(shù)相等,可知由有.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)所抽取的人中得分落在組和內(nèi)的人數(shù)分別為人、人;(2)分布列見解析,.【解題分析】
(1)將分別乘以區(qū)間、對(duì)應(yīng)的矩形面積可得出結(jié)果;(2)由題可知,隨機(jī)變量的可能取值為、、,利用超幾何分布概率公式計(jì)算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,并由此計(jì)算出隨機(jī)變量的數(shù)學(xué)期望值.【題目詳解】(1)由題意知,所抽取的人中得分落在組的人數(shù)有(人),得分落在組的人數(shù)有(人).因此,所抽取的人中得分落在組的人數(shù)有人,得分落在組的人數(shù)有人;(2)由題意可知,隨機(jī)變量的所有可能取值為、、,,,,所以,隨機(jī)變量的分布列為:所以,隨機(jī)變量的期望為.【題目點(diǎn)撥】本題考查利用頻率分布直方圖計(jì)算頻數(shù),同時(shí)也考查了離散型隨機(jī)變量分布列與數(shù)學(xué)期望的求解,考查計(jì)算能力,屬于基礎(chǔ)題.18、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解題分析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結(jié)果,判斷至少增加2人.【題目詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學(xué)期望;(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),a,b的值可能為:,或,或.經(jīng)計(jì)算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【題目點(diǎn)撥】本題考查離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差,屬于中等題.19、(1)(2)【解題分析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個(gè)極值點(diǎn)故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點(diǎn)睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)本題的難點(diǎn)有兩個(gè),其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.20、(1)沒有(2)分布列見解析,(3)證明見解析【解題分析】
(1)根據(jù)公式計(jì)算卡方值,再對(duì)應(yīng)卡值表判斷..(2)根據(jù)題意,隨機(jī)變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據(jù)期望公式求值.(3)因?yàn)橹辽?個(gè)的偶數(shù)個(gè)十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個(gè)路口中有個(gè)路口種植楊樹,下面分類討論①當(dāng)時(shí),由論證.②當(dāng)時(shí),由論證.③當(dāng)時(shí),,設(shè),再論證當(dāng)時(shí),取得最小值即可.【題目詳解】(1)本次實(shí)驗(yàn)中,,故沒有99.9%的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對(duì)任意,有.證明:因?yàn)?,所?設(shè)個(gè)路口中有個(gè)路口種植楊樹,①當(dāng)時(shí),,因?yàn)?,所以,于?②當(dāng)時(shí),,同上可得③當(dāng)時(shí),,設(shè),當(dāng)時(shí),,顯然,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 稅務(wù)局2025年度環(huán)境保護(hù)與治理合同
- 2025年度出口退稅證明開具與跨境電商平臺(tái)服務(wù)合同3篇
- 2024良鄉(xiāng)校區(qū)物業(yè)管理服務(wù)合同
- 2025年度裝載機(jī)租賃與施工技術(shù)指導(dǎo)合同3篇
- 二零二四年圍欄產(chǎn)品研發(fā)與創(chuàng)新設(shè)計(jì)合同3篇
- 二零二五年度綠色通道不過戶二手房買賣合同2篇
- 2025年度新能源發(fā)電項(xiàng)目變壓器采購(gòu)合同標(biāo)準(zhǔn)范本3篇
- 2024版跨國(guó)企業(yè)社會(huì)責(zé)任合規(guī)合同
- 二零二五版?zhèn)€人購(gòu)房貸款擔(dān)保與房屋維修基金代繳代理合同3篇
- 二零二五版股權(quán)代持實(shí)務(wù)解析與合規(guī)操作合同
- 割接方案的要點(diǎn)、難點(diǎn)及采取的相應(yīng)措施
- 2025年副護(hù)士長(zhǎng)競(jìng)聘演講稿(3篇)
- 2025至2031年中國(guó)臺(tái)式燃?xì)庠钚袠I(yè)投資前景及策略咨詢研究報(bào)告
- 原發(fā)性腎病綜合征護(hù)理
- (一模)株洲市2025屆高三教學(xué)質(zhì)量統(tǒng)一檢測(cè) 英語試卷
- 第三章第一節(jié)《多變的天氣》說課稿2023-2024學(xué)年人教版地理七年級(jí)上冊(cè)
- 2025年中國(guó)電科集團(tuán)春季招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年度建筑施工現(xiàn)場(chǎng)安全管理合同2篇
- 建筑垃圾回收利用標(biāo)準(zhǔn)方案
- 2024年考研英語一閱讀理解80篇解析
- 樣板間合作協(xié)議
評(píng)論
0/150
提交評(píng)論