江蘇省泰州市泰興市黃橋教育聯(lián)盟2023年數(shù)學八上期末檢測模擬試題含解析_第1頁
江蘇省泰州市泰興市黃橋教育聯(lián)盟2023年數(shù)學八上期末檢測模擬試題含解析_第2頁
江蘇省泰州市泰興市黃橋教育聯(lián)盟2023年數(shù)學八上期末檢測模擬試題含解析_第3頁
江蘇省泰州市泰興市黃橋教育聯(lián)盟2023年數(shù)學八上期末檢測模擬試題含解析_第4頁
江蘇省泰州市泰興市黃橋教育聯(lián)盟2023年數(shù)學八上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省泰州市泰興市黃橋教育聯(lián)盟2023年數(shù)學八上期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.下列因式分解結果正確的有()①;②;③;④A.1個 B.2個 C.3個 D.4個2.已知一個等腰三角形的腰長是,底邊長是,這個等腰三角形的面積是()A. B. C. D.3.下列說法中,正確的是()A.若,則B.若,則C.若,則D.若,則4.若x、y的值均擴大為原來的2倍,則下列分式的值保持不變的是A. B. C. D.5.若一組數(shù)據(jù)2,0,3,4,6,x的眾數(shù)為4,則這組數(shù)據(jù)中位數(shù)是()A.0 B.2 C.3 D.3.56.如圖,,,與交于點,點是的中點,.若,,則的長是()A. B.C.3 D.57.如圖,中,,分別是,的平分線,,則等于()A. B. C. D.8.如果一次函數(shù)的圖象經(jīng)過第二第四象限,且與x軸正半軸相交,那么()A. B. C. D.9.人體中紅細胞的直徑約為0.0000077米,將0.0000077用科學記數(shù)法表示為()A.7.7×10﹣6 B.7.7×10﹣5 C.0.77×10﹣6 D.0.77×10﹣510.若(2x﹣y)2+M=4x2+y2,則整式M為()A.﹣4xy B.2xy C.﹣2xy D.4xy二、填空題(每小題3分,共24分)11.的絕對值是.12.用反證法證明命題“在一個三角形中至少有一個內角小于或等于60°”時,應假設________.13.當x=2+時,x2﹣4x+2020=_____.14.因式分解:______.15.若關于和的二元一次方程組,滿足,那么的取值范圍是_____.16.直角三角形兩直角邊長分別為5和12,則它斜邊上的高為____________17.如果從一卷粗細均勻的電線上截取1米長的電線,稱得它的質量為a克,再稱得剩余電線的質量為b克,那么原來這卷電線的總長度是米.18.已知一次函數(shù)的圖像經(jīng)過點(m,1),則m=____________.三、解答題(共66分)19.(10分)方格紙中的每個小方格都是邊長為1個單位的正方形,建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(3,1).(1)畫出△ABC關于y軸對稱的△A1B1C1(2)將△A1B1C1向下平移3個單位后得到△A2B2C2,畫出平移后的△A2B2C2,并寫出頂點B2的坐標.20.(6分)已知,,求下列式子的值:(1);(2)21.(6分)如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD(1)求證:CE∥GF;(2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).22.(8分)分式化簡求值與解方程(1)分式化簡求值÷,其中(2)解分式方程:23.(8分)已知:點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.(1)如圖1,若點O在邊BC上,OE⊥AB,OF⊥AC,垂足分別為E,F(xiàn).求證:AB=AC;(2)如圖,若點O在△ABC的內部,求證:AB=AC;(3)若點O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.24.(8分)教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學教材第94頁的部分內容.1.線段垂直平分線我們已經(jīng)知道線段是軸對稱圖形,線段的垂直平分線是線段的對稱軸,如圖,直線是線段的垂直平分線,是上任一點,連結.將線段沿直線對折,我們發(fā)現(xiàn)與完全重合.由此即有:線段垂直平分線的性質定理線段垂直平分線上的點到線段兩端的距離相等.已知:如圖,垂足為點,點是直線上的任意一點.求證:.分析圖中有兩個直角三角形和,只要證明這兩個三角形全等,便可證得.定理證明:請根據(jù)教材中的分析,結合圖①,寫出“線段垂直平分線的性質定理”完整的證明過程.定理應用:(1)如圖②,在中,直線分別是邊的垂直平分線,直線m、n交于點,過點作于點.求證:.(1)如圖③,在中,,邊的垂直平分線交于點,邊的垂直平分線交于點.若,則的長為__________.25.(10分)問題背景若兩個等腰三角形有公共底邊,則稱這兩個等腰三角形的頂角的頂點關于這條底邊互為頂針點;若再滿足兩個頂角的和是180°,則稱這兩個頂點關于這條底邊互為勾股頂針點.如圖1,四邊形中,是一條對角線,,,則點與點關于互為頂針點;若再滿足,則點與點關于互為勾股頂針點.初步思考(1)如圖2,在中,,,、為外兩點,,,為等邊三角形.①點與點______關于互為頂針點;②點與點______關于互為勾股頂針點,并說明理由.實踐操作(2)在長方形中,,.①如圖3,點在邊上,點在邊上,請用圓規(guī)和無刻度的直尺作出點、,使得點與點關于互為勾股頂針點.(不寫作法,保留作圖痕跡)思維探究②如圖4,點是直線上的動點,點是平面內一點,點與點關于互為勾股頂針點,直線與直線交于點.在點運動過程中,線段與線段的長度是否會相等?若相等,請直接寫出的長;若不相等,請說明理由.26.(10分)(1)如圖①,在△ABC中,∠C=90°,請用尺規(guī)作圖作一條直線,把△ABC分割成兩個等腰三角形,并說明理由(保留作圖痕跡,不寫作法);(2)已知內角度數(shù)的兩個三角形如圖②、圖③所示,能否分別畫一條直線把他們分割成兩個等腰三角形?若能,請寫出分割成的兩個等腰三角形頂角的度數(shù).

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)提公因式法和公式法因式分解即可.【詳解】①,故①錯誤;②,故②正確;③,故③錯誤;④,故④錯誤.綜上:因式分解結果正確的有1個故選A.【點睛】此題考查的是因式分解,掌握提公因式法和公式法因式分解是解決此題的關鍵,需要注意的是因式分解要徹底.2、D【分析】根據(jù)題意畫出圖形,過點A作AD⊥BC于點D,根據(jù)勾股定理求出AD的長,進而可得出結論.【詳解】解:如圖所示,

過點A作AD⊥BC于點D,

∵AB=AC=5,BC=8,

∴BD=BC=4,

∴AD=,∴S△ABC=BC?AD=×8×3=1.

故選D.【點睛】本題考查的是勾股定理和等腰三角形的性質,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.3、B【分析】根據(jù)不等式的性質逐一對選項進行分析即可.【詳解】A.若,當時,則,故該選項錯誤;B.若,則,故該選項正確;C.若,則,故該選項錯誤;D.若,則不一定比大,故該選項錯誤;故選:B.【點睛】本題主要考查不等式,考慮到a,b可能是任意實數(shù)是解題的關鍵.4、A【分析】據(jù)分式的基本性質,x,y的值均擴大為原來的2倍,求出每個式子的結果,看結果等于原式的即是.【詳解】解:根據(jù)分式的基本性質,可知若x,y的值均擴大為原來的2倍,A、,B、,C、,D、,故選A.【點睛】本題考查的是分式的基本性質,即分子分母同乘以一個不為0的數(shù),分式的值不變.此題比較簡單,但計算時一定要細心.5、D【分析】眾數(shù)為一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),由此可確定x的值,再根據(jù)中位數(shù)是將這組數(shù)據(jù)按從小到大的順序排列后最中間的一個數(shù)(奇數(shù)個數(shù)據(jù))或最中間兩個數(shù)的平均數(shù)(偶數(shù)個數(shù)據(jù))確定這組數(shù)據(jù)的中位數(shù)即可.【詳解】解:這組數(shù)據(jù)的眾數(shù)是4,因此x=4,將這組數(shù)據(jù)從小到大排序后為0,2,3,4,4,6,處在最中間的兩個數(shù)的平均數(shù)為,因此中位數(shù)是3.1.故選:D.【點睛】本題考查了中位數(shù)和眾數(shù),會求一組數(shù)據(jù)的中位數(shù)和眾數(shù)是解題的關鍵.6、C【分析】根據(jù)直角三角形的性質和等腰三角形的判定和性質即可得到結論.【詳解】∵AB⊥AF,

∴∠FAB=90°,

∵點D是BC的中點,

∴AD=BD=BC=4,

∴∠DAB=∠B,

∴∠ADE=∠B+∠BAD=2∠B,

∵∠AEB=2∠B,

∴∠AED=∠ADE,

∴AE=AD,∴AE=AD=4,

∵EF=,EF⊥AF,

∴AF=3,

故選:C.【點睛】本題考查了直角三角形斜邊中線的性質,三角形的外角性質,等腰三角形的判定和性質,勾股定理,正確的識別圖形是解題的關鍵.7、B【分析】根據(jù)三角形的內角和定理求出∠ABC+∠ACB的度數(shù),再根據(jù)角平分線的定義求出∠OBC+∠OCB的度數(shù),再根據(jù)三角形的內角和定理即可求出∠BOC的度數(shù).【詳解】解:∵∠A=50°,

∴∠ABC+∠ACB=180°-∠A=180°-50°=130°,

∵BO,CO分別是∠ABC,∠ACB的平分線,,∴∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.

故選:B.【點睛】本題考查角平分線的有關計算,三角形內角和定理.本題中是將∠OBC+∠OCB看成一個整體求得的,掌握整體思想是解決此題的關鍵.8、C【分析】根據(jù)一次函數(shù)的性質,即可判斷k、b的范圍.【詳解】解:∵一次函數(shù)的圖象經(jīng)過第二第四象限,∴,∵直線與x軸正半軸相交,∴,∴;故選擇:C.【點睛】本題考查了一次函數(shù)的圖形和性質,解題的關鍵是根據(jù)直線所經(jīng)過的象限,正確判斷k、b的取值范圍.9、A【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.0000077=7.7×10﹣1.故選A.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.10、D【分析】根據(jù)完全平方公式,即可解答.【詳解】解:因為(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故選:D.【點睛】本題考查完全平方公式,解題的關鍵是掌握完全平方公式的概念:兩數(shù)和(或差)的平方,等于它們的平方和,再加上(或減去)它們積的2倍.二、填空題(每小題3分,共24分)11、【解析】試題分析:由負數(shù)的絕對值等于其相反數(shù)可得.考點:絕對值得性質.12、在一個三角形中三個角都大于60°【分析】根據(jù)反證法的第一步是假設結論不成立進行解答即可.【詳解】由反證法的一般步驟,第一步是假設命題的結論不成立,所以應假設在一個三角形中三個角都大于60°,故答案為:在一個三角形中三個角都大于60°.【點睛】本題考查反證法,反證法的一般步驟是:①假設命題的結論不成立;②從這個假設出發(fā),經(jīng)過推理論證,得出矛盾;③由矛盾判定假設不正確,從而肯定原命題的結論正確.13、1.【分析】將x2﹣4x+2020進行配方,化為(x﹣2)2+2016,然后根據(jù)x=2+,即可求解.【詳解】由已知得:x﹣2=,∴x2﹣4x+2020=(x﹣2)2+2016=3+2016=1.故答案為1.【點睛】本題考查因式分解,學會利用配方法分解因式是本題的關鍵.14、【分析】利用平方差公式進行因式分解.【詳解】解:.故答案是:.【點睛】本題考查因式分解,解題的關鍵是掌握因式分解的方法.15、m>?1【分析】兩方程相加可得x+y=m+1,根據(jù)題意得出關于m的不等式,解之可得.【詳解】解:,①+②得:3x+3y=3m+3,則x+y=m+1,∵,∴m+1>0,解得:m>?1,故答案為:m>?1.【點睛】本題考查的是解二元一次方程組以及解一元一次不等式,整體求出x+y=m+1是解題的關鍵.16、【分析】先用勾股定理求出斜邊長,然后再根據(jù)直角三角形面積的兩種公式求解即可.【詳解】∵直角三角形的兩直角邊長分別為5和12,∴斜邊長=∵直角三角形面積S=×5×12=×13×斜邊的高,∴斜邊的高=.故答案為:.【點睛】本題考查勾股定理及直角三角形面積,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.17、【解析】試題分析:根據(jù)題意得:剩余電線的質量為b克的長度是米.所以這卷電線的總長度是()米.考點:列代數(shù)式(分式).18、-1【分析】把(m,1)代入中,得到關于m的方程,解方程即可.【詳解】解:把(m,1)代入中,得

,解得m=-1.

故答案為:-1.【點睛】本題主要考查了一次函數(shù)圖象上點的坐標特征,解題方法一般是代入這個點求解.三、解答題(共66分)19、(1)見解析;(2)見解析,B2(-1,-3)【分析】(1)利用關于y軸對稱點的性質:縱坐標不變,橫坐標互為相反數(shù),得出對應點位置即可得出答案;(2)分別作出點A1、B1、C1向下平移3個單位后的點,然后順次連接,且B2的坐標即為點B1縱坐標減3即可.【詳解】解:(1)如圖△A1B1C1,即為所求;(2)如圖△A2B2C2,即為所求,B2(-1,-3).【點睛】本題考查了根據(jù)軸對稱變換和平移變換作圖,解答本題的關鍵是根據(jù)網(wǎng)格結構作出對應點的位置,并順次連接.20、(1)-4;(2)21【分析】(1)根據(jù)a,b的值求出a+b,ab的值,再根據(jù)a2+b2=(a+b)2-2ab,代入計算即可;(2)根據(jù)(1)得出的a+b,ab的值,再根據(jù)代入計算即可.【詳解】(1)∵,,∴,,∴(2)由(1)得,,∴【點睛】此題考查了二次根式的化簡求值,用到的知識點是二次根式的性質、完全平方公式、平方差公式,關鍵是對要求的式子進行化簡.21、(1)證明見解析;(2)∠AED+∠D=180°,理由見解析;(3)∠AEM=130°【解析】分析:(1)根據(jù)同位角相等兩直線平行,可證CE∥GF;(2)根據(jù)平行線的性質可得∠C=∠FGD,根據(jù)等量關系可得∠FGD=∠EFG,根據(jù)內錯角相等,兩直線平行可得AB∥CD,再根據(jù)平行線的性質可得∠AED與∠D之間的數(shù)量關系;(3)根據(jù)對頂角相等可求∠DHG,根據(jù)三角形外角的性質可求∠CGF,根據(jù)平行線的性質可得∠C,∠AEC,再根據(jù)平角的定義可求∠AEM的度數(shù).本題解析:(1)證明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.點睛:本題考查了平行線的判定與性質,解題關鍵是根據(jù)已知條件判斷相關的內錯角,同位角的相等關系.22、(1),;(2)【分析】(1)先化簡分式得到,再將變形為代入求值即可;(2)去分母,將分式方程化成整式方程,求出x值,再檢驗即可.【詳解】解:(1)÷=====∵其中∴∴原式==;(2)解:去分母得:化簡得:,經(jīng)檢驗是原方程的解,∴原方程的解是.【點睛】本題考查了分式的化簡求值與解分式方程,解題的關鍵是掌握運算法則和解法.23、(1)見解析;(2)見解析;(3)不一定成立,見解析.【解析】(1)求證AB=AC,就是求證∠B=∠C,利用斜邊直角邊定理(HL)證明Rt△OEB≌Rt△OFC即可;

(2)首先得出Rt△OEB≌Rt△OFC,則∠OBE=∠OCF,由等邊對等角得出∠OBC=∠OCB,進而得出∠ABC=∠ACB,由等角對等邊即可得AB=AC;

(3)不一定成立,當∠A的平分線所在直線與邊BC的垂直平分線重合時,有AB=AC;否則,AB≠AC.【詳解】(1)證明:∵點O在邊BC上,OE⊥AB,OF⊥AC,點O到△ABC的兩邊AB,AC所在直線的距離相等,

∴OE=OF,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),

∴∠ABC=∠ACB,

∴AB=AC;

(2)證明:過點O分別作OE⊥AB于E,OF⊥AC于F,

由題意知,OE=OF.∠BEO=∠CFO=90°,

∵在Rt△OEB和Rt△OFC中

∴Rt△OEB≌Rt△OFC(HL),

∴∠OBE=∠OCF,

又∵OB=OC,

∴∠OBC=∠OCB,

∴∠ABC=∠ACB,

∴AB=AC;

(3)解:不一定成立,當∠A的平分線所在直線與邊BC的垂直平分線重合時AB=AC,否則AB≠AC.(如示例圖)

【點睛】本題考查全等三角形的判定和性質,等腰三角形的判定和性質,熟練掌握全等三角形的判定方法是解題的關鍵.24、證明見解析;(1)證明見解析;(1)2.【分析】定理證明:根據(jù)垂直的定義可得∠PAC=∠PCB=90°,利用SAS可證明△PAC≌△PBC,根據(jù)全等三角形的性質即可得出PA=PB;(1)如圖,連結,根據(jù)垂直平分線的性質可得OB=OC,OA=OC,即可得出OA=OB,根據(jù)等腰三角形“三線合一”的性質可得AH=BH;(1)如圖,連接BD、BE,根據(jù)等腰三角形的性質可得出∠A=∠C=30°,根據(jù)垂直平分線的性質可得AD=BD,CE=BE,根據(jù)等腰三角形的性質及外角的性質可證明三角形BDE是等邊三角形,可得DE=AC,即可得答案.【詳解】定理證明:,∴∠PAC=∠PCB=90°,,..(1)如圖,連結.∵直線m、n分別是邊的垂直平分線,..,.(1)如圖,連接BD、BE,∵∠ABC=110°,AB=BC,∴∠A=∠C=30°,∵邊的垂直平分線交于點,邊的垂直平分線交于點,∴AD=BD,CE=BE,∴∠A=∠ABD,∠C=∠CBE,∴∠BDE=1∠A=20°,∠BED=1∠C=20°,∴∠DBE=20°∴△BDE是等邊三角形,∴DE=BD=BE=AD=CE,∴DE=AC∵AC=18,∴DE=2故答案為:2.【點睛】本題考查了線段的垂直平分線的性質、全等三角形的判定和性質、等邊三角形的判定和性質等知識,掌握并靈活運用數(shù)學基本知識是解答本題的關鍵.25、(1)①、,②,理由見解析;(2)①作圖見解析;②與可能相等,的長度分別為,,2或1.【分析】(1)根據(jù)互為頂點,互為勾股頂針點的定義即可判斷.

(2)①以C為圓心,CB為半徑畫弧交AD于F,連接CF,作∠BCF的角平分線交AB于E,點E,點F即為所求.

②分四種情形:如圖①中,當時;如圖②中,當時;如圖③中,當時,此時點F與D重合;如圖④中,當時,點F與點D重合,分別求解即可解決問題.【詳解】解:(1)根據(jù)互為頂點,互

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論