版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
C280,ComputerVision
Prof.TrevorDarrell
trevor@
Lecture6:LocalFeatures
LastTime:ImagePyramids
?ReviewofFourierTransform
?SamplingandAliasing
?ImagePyramids
?Applications:Blendingandnoiseremoval
Today:FeatureDetectionand
Matching
?Localfeatures
?Pyramidsforinvariantfeaturedetection
?Invariantdescriptors
?Matching
Imagematching
byDivaSian
byswashford
Hardercase
byDivaSianbyscqbt
Harderstill?
NASAMarsRoverimages
Answerbelow(lookfortinycoloredsquares...)
NASAMarsRoverimages
withSIFTfeaturematches
FigurebyNoahSnavely
Localfeaturesandalignment
?Weneedtomatch(align)images
?Globalmethodssensitivetoocclusion,lighting,parallax
effects.Solookforlocalfeaturesthatmatchwell.
?Howwouldyoudoitbyeye?
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
?Detectfeaturepointsinbothimages
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
?Detectfeaturepointsinbothimages
?Findcorrespondingpairs
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
?Detectfeaturepointsinbothimages
?Findcorrespondingpairs
?Usethesepairstoalignimages
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
?Problem1:
-Detectthesamepointindependentlyinboth
images
nochancetomatch!
Weneedarepeatabledetector
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
?Problem2:
-Foreachpointcorrectlyrecognizethe
correspondingone
Weneedareliableanddistinctivedescriptor
[DaryaFrolovaandDenisSimakov]
Geometrictransformations
Photometrictransformations
FigurefromT.TuytelaarsECCV2006tutorial
Andothernuisances...
?Noise
?Blur
?Compressionartifacts
Invariantlocalfeatures
Subsetoflocalfeaturetypesdesignedtobeinvariantto
commongeometricandphotometrictransformations.
Basicsteps:
1)Detectdistinctiveinterestpoints
2)Extractinvariantdescriptors
Figure:DavidLowe
Mainquestions
?Wherewilltheinterestpointscomefrom?
-Whataresalientfeaturesthatwelldetectin
multipleviews?
?Howtodescribealocalregion?
?Howtoestablishcorrespondences,i.e.,
computematches?
Figure4.3:Imagepairswithextractedpatchesbelow.Noticehowsomepatchescanbelocalized
ormatchedwithhigheraccuracythanothers.
FindingCorners
Keyproperty:intheregionaroundacorner,
imagegradienthastwoormoredominant
directions
Cornersarerepeatableanddistinctive
C.HarrisandM.Stephens."ACombinedComerandEdgeDetector.”
Proceedingsofthe4thAlveyVisionConference:pages147-151.
Source:LanaLazebnik
Cornersasdistinctiveinterestpoints
Weshouldeasilyrecognizethepointby
lookingthroughasmallwindow
Shiftingawindowinanydirectionshouldgive
alargechangeinintensity
“flat”region:“edge”:“corner”:
nochangeinnochangesignificant
alldirectionsalongtheedgechangeinall
directiondirections
Source:A.Efros
HarrisDetectorformulation
Changeofintensityfortheshift[u,v\\
v)=ZMx,y)[/(x+么y+v)—
1inwindow,0outsideGaussian
Source:R.Szeliski
HarrisDetectorformulation
Thismeasureofchangecanbeapproximatedby:
u
E(u,v)[uv]M
V
whereMisa2x2matrixcomputedfromimagederivatives:
rii
M=£w(x,y)XXyGradientwith
III2respecttox,
xyytimesgradient
withrespecttoy
Sumoverimageregion-area
wearecheckingforcorner
£Ix【xEIxlylx
M=[[①ly]
£Ixly£lyly
HarrisDetectorformulation
whereMisa2x2matrixcomputedfromimagederivatives:
M=£w(x,y)3Gradientwith
respecttox,
Atimesgradient
withrespecttoy
Sumoverimageregion-area
wearecheckingforcorner
£Ix【xEIxly
M=[[①ly]
£Ixly£lyly
Whatdoesthismatrixreveal?
First,consideranaxis-alignedcorner:
Whatdoesthismatrixreveal?
First,consideranaxis-alignedcorner:
o-
M=
5Z4=_o
Thismeansdominantgradientdirectionsalignwith
xoryaxis
IfeitherAiscloseto0,thenthisisnotacorner,so
lookforlocationswherebotharelarge.
Whatifwehaveacornerthatisnotalignedwiththe
imageaxes?
Slidecredit:DavidJacobs
GeneralCase
40
SinceMissymmetric,wehaveM=R~]R
o4
WecanvisualizeMasanellipsewithaxis
lengthsdeterminedbytheeigenvaluesand
orientationdeterminedbyR
directionofthe
slowestchange
SlideadaptedformDaryaFrolova,DenisSimakov.
Interpretingtheeigenvalues
Classificationofimagepointsusingeigenvalues
ofM:
九2
九1and九2aresmall;
Eisalmostconstant
inalldirections
Cornerresponsefunction
R=det(M)-atrace(M)2=44一研4+4)?
a:constant(0.04to0.06)
HarrisCornerDetector
?Algorithmsteps:
-ComputeMmatrixwithinallimagewindowstoget
theirRscores
-Findpointswithlargecornerresponse
(/?>threshold)
-TakethepointsoflocalmaximaofR
HarrisDetector:Workflow
SlideadaptedformDaryaFrolova,DenisSimakov,WeizmannInstitute.
HarrisDetector:Workflow
ComputecornerresponseR
HarrisDetector:Workflow
Findpointswithlargecornerresponse:7?>threshold
HarrisDetector:Workflow
TakeonlythepointsoflocalmaximaofR
HarrisDetector:Workflow
HarrisDetector:Properties
?Rotationinvariance
Ellipserotatesbutitsshape(i.e.
eigenvalues)remainsthesame
CornerresponseRisinvarianttoimagerotation
HarrisDetector:Properties
?Notinvarianttoimagescale
G
AllpointswillbeCorner!
classifiedasedges
?Howcanwedetectscaleinvariant
interestpoints?
Howtocopewithtransformations?
?Exhaustivesearch
?Invariance
?Robustness
Exhaustivesearch
?Multi-scaleapproach
SlidefromT.TuytelaarsECCV2006tutorial
Exhaustivesearch
?Multi-scaleapproach
為
Exhaustivesearch
?Multi-scaleapproach
Exhaustivesearch
?Multi-scaleapproach
Invariance
?Extractpatchfromeachimageindividually
Automaticscaleselection
?Solution:
-Designafunctionontheregion,whichis“scale
invariant55(thesameforcorrespondingregions,
eveniftheyareatdeferentscales}
Example:averageintensity.Forcorresponding
regions(evenofdifferentsizes)itw川bethesame.
-Forapointinoneimage,wecanconsideritas
afunctionofregionsize(patchwidth)
regionsizeregionsize
Automaticscaleselection
?Commonapproach:
Takealocalmaximumofthisfunction
Observation:regionsize,forwhichthemaximumis
achieved,shouldbeinvarianttoimagescale.
Important:thisscaleinvariantregionsizeis
foundineachimageindependently!
AutomaticScaleSelection
_
.s
」o
l
n
j
_
u
o
E
u
6
o
o
aH)Sameoperatorresponsesifthepatchcontainsthesameimageup
ol
gtoscalefactor.
q
o
ron48
sK.Grauman,B.Leibe
>
AutomaticScaleSelection
Functionresponsesforincreasingscale(scalesignature)
Hro
o
nl
l
U
O
E
U
6
0
0
0H)
l
o
a)-
q
o
a
n
s49
>K.Grauman,B.Leibe
AutomaticScaleSelection
Functionresponsesforincreasingscale(scalesignature)
Hro
o
l
n
l
U
O
E
U
6
0
0
0>H
l
o
a)-
q
o
-
e
n
s
>50
K.Grauman,B.Leibe
AutomaticScaleSelection
Functionresponsesforincreasingscale(scalesignature)
Hro
o
nl
l
U
0
4
C
6
0
0
0>H
l
o
a)-
q
o
-
e
n
sK.Grauman,B.Leibe
>
AutomaticScaleSelection
?Functionresponsesforincreasingscale(scalesignature)
_
.s
o」
nl
_j
U
0
E
U
6
0
。①
a
l
o
g
q
o
7nB
s
>52
K.Grauman,B.Leibe
AutomaticScaleSelection
-
B
H
O
nl
l
U
O
E
U
6
O
O
O
H
l
o
o)-
q
o
a
n
s
>
K.Grauman,B.Leibe
AutomaticScaleSelection
Hro
o
nl
l
U
O
4
C
6
O
O
O
H
1
0
<D-
q
0
a
n
s
>54
K.Grauman,B.Leibe
Scaleselection
?Usethescaledeterminedbydetectortocompute
descriptorinanormalizedframe
[ImagesfromT.Tuytelaars]
WhatIsAUsefulSignatureFunction?
Laplacian-of-Gaussian="blob"detector
-
B
M
O
l
n
l
U
0
W
U
6
0
0
①
a
ol
a-)
q
o
-
e
n
s
>
56
K.Grauman,B.Leibe
Characteristicscale
Wedefinethecharacteristicscaleasthescale
thatproducespeakofLaplacianresponse
2000
1500
1000
500
°017
characteristicscale
T.Lindeberg(1998)."FeaturedetectionwthautomaticscaleselectionJ
InternationalJournalofComputerVision30(2):pp77--116.Source:LanaLazebnik
Laplacian-of-Gaussian(LoG)
?Interestpoints:
5
Localmaximainscalea
spaceofLaplacian-of-
Gaussiana4
-
B
M
O
l
n
l
U
O
4
C
6
O2
。o
①
a
1
0nListof
<l-)
q
0
76n
s
>
K.Grauman,B.Leibe
Scale-spaceblobdetector:Example
Source:LanaLazebnik
Scale-spaceblobdetector:Example
sigma=11.9912
Source:LanaLazebnik
Scale-spaceblobdetector:Example
Source:LanaLazebnik
KeypointlocalizationwithDoG
?Detectmaximaof
difference-of-Gaussian
(DoG)inscalespace
?Thenrejectpointswithlow
contrast(threshold)
?Eliminateedgeresponses
Candidatekeypoints:
listof(x,y,o)
Exampleofkeypointdetection
(a)233x189image
(b)832DOGextrema
(c)729leftafterpeak
valuethreshold
(d)536leftaftertesting
ratioofprinciple
curvatures(removing
edgeresponses)
ScaleInvariantDetection:Summary
?Given:twoimagesofthesamescenewitha
largescaledifferencebetweenthem
?Goal:findthesameinterestpoints
independentlyineachimage
?Solution:searchformaximaofsuitable
functionsinscaleandinspace(overthe
image)
Mainquestions
?Wherewilltheinterestpointscomefrom?
-Whataresalientfeaturesthatwelldetectin
multipleviews?
?Howtodescribealocalregion?
?Howtoestablishcorrespondences,i.e.,
computematches?
Localdescriptors
?Weknowhowtodetectpoints
?Nextquestion:
Howtodescribethemformatching?
Pointdescriptorshouldbe:
1.Invariant
2.Distinctive
Localdescriptors
?Simplestdescriptor:listofintensitieswithin
apatch.
?Whatisthisgoingtobeinvariantto?
WriteregionsasvectorsregionB
A—>a,B-yb
I
I
vectoravectorb
Featuredescriptors
Disadvantageofpatchesasdescriptors:
?Smallshiftscanaffectmatchingscorealot
Solution:histograms
o2兀
Source:LanaLazebnik
Featuredescriptors:SIFT
ScaleInvariantFeatureTransform
Descriptorcomputation:
?Dividepatchinto4x4sub-patches:16cells
?Computehistogramofgradientorientations(8reference
angles)forallpixelsinsideeachsub-patch
?Resultingdescriptor:4x4x8=128dimensions
DavidG.Lowe."Distinctiveimagefeaturesfromscale-invariantkeypoints."IJCV60
(2),pp.91-110,2004.
Source:LanaLazebnik
RotationInvariantDescriptors
?Harriscornerresponsemeasure:
dependsonlyontheeigenvaluesofthe
matrixM
E㈡人
RotationInvariantDescriptors
?Findlocalorientation
Dominantdirectionofgradientfortheimagepatch
?Rotatepatchaccordingtothisangle
Thisputsthepatchesintoacanonical
orientation.
RotationInvariantDescriptors
ImagefromMatthewBrown
Featuredescriptors:SIFT
Extraordinarilyrobustmatchingtechnique
?Canhandlechangesinviewpoint
-Uptoabout60degreeoutofplanerotation
?Canhandlesignificantchangesinillumination
-Sometimesevendayvs.night(below)
?Fastandefficient-canruninrealtime
?Lotsofcodeavailable
一http:〃/albert/ladvnack/wiki/index.php/KnownimplementationsofSIFT
WorkingwithSIFTdescriptors
?Oneimageyields:
-n128-dimensionaldescriptors:each
oneisahistogramofthegradient
orientationswithinapatch
?[nx128matrix]
一nscaleparametersspecifyingthesize
ofeachpatch
?[nx1vector]
-norientationparametersspecifyingthe
angleofthepatch
?[nx1vector]
-n2dpointsgivingpositionsofthe
patches
?[nx2matrix]
AffineInvariantDetection
(aproxyforinvariancetoperspectivetransformations)
?Aboveweconsidered:
Similarity?transfo匚rm(rota?tion+uniformscale)
?Nowwegoonto:
Affinetransform(rotation+non-uniformscale)
■U
Mikolajczyk:HarrisLaplace
Mikolajczyk:HarrisLaplace
7.Initialization:MultiscaleHarriscorner
detection
2ScaleselectionbasedonLaplacian
Harrispoints
Harris-Laplacepoints
Mikolajczyk:HarrisAffine
?BasedonHarrisLaplace
?Usingnormalization/deskewing
Mikolajczyk:HarrisAffine
1.Detectmulti-scaleHarrispoints
2.Automaticallyselectthescales
3.Adaptaffineshapebasedonsecondordermomentmatrix
4.Refinepointlocation
Mikolajczyk:affineinvariant
interestpoints
1.Initialization:MultiscaleHarriscorner
detection
2.Iterativealgorithm
Normalizewindow(deskewing)
Selectintegrationscale(max.ofLoG)
Selectdifferentiationscale(max.
Detectspatiallocalization(Harris)
Computenewaffinetransformation
Gotostep2.(unlessstopcriterion)
HarrisAffine
AffineInvariantDetection:
Summary
?Underaffinetransformation,wedonotknowinadvance
shapesofthecorrespondingregions
?Ellipsegivenbygeometriccovariancematrixofaregion
robustlyapproximatesthisregion
?Forcorrespondingregionsellipsesalsocorrespond
OtherMethods:
1.Searchforextremumalongrays[Tuytelaars,VanGool]:
2.MaximallyStableExtremalRegions[Mataset.al.]
Featuredetectoranddescriptorsummary
?Stable(repeatable)featurepointscanbe
detectedregardlessofimagechanges
-Scale:searchforcorrectscaleasmaximumofappropriatefunction
-Affine:approximateregionswithellipses(thisoperationisaffine
invariant)
?Invariantanddistinctivedescriptorscanbe
computed
-Invariantmoments
-Normalizingwithrespecttoscaleandaffinetransformation
Moreonfeaturedetection/description
Address;希http://www.robots.ox.ac.uk/~vgg/research/affine/
Google▼mikolajczyk▼儂SearchWeb
AffineCovariantRegions
Publications
Regiondetectors?Harris-Affine&HessianAffine.K.MikolajczykandC.Schmid,ScaleandAffineinvariantinterestpointdetectors.In
UCV1(60):63-86,2004.PDF
?MSER.J.Matas,0.Chum,M.Urban,andT.Pajdla,Robustwidebaselinestereofrommaximallystableextremalregions.
InBMVCp.384-393,2002.PDF
?1BR&EBR.T.TuytelaarsandL.VonGool,MatchingwidelyseparatedviewsbasedonaflSneinvariantregions.InUCV1
(59):61-85,2004.PDF
?Salientregions:T.Kadir,A.Zisserman,andM.Brady,Anaffineinvariantsalientregiondetector.InECCVp.404-416,
2004.PDF
Regiondescriptors?SIFT.D.Lowe,Distinctiveimagefeaturesfromscaleinvariantkeypoints.InUCV2(60):91-110,2004.PDF
Performance?K.Mkolaiczyk,T.Tuytelaars,C.Schmid,A.Zisserman,J.Matas,F.Schafifalitzky,T.KadirandL.VanGool,A
evaluationcomparisonofaffineregiondetectors.TechnicalReport,acceptedtoUCV.PDF
?K.Mikolajczyk,C.Schmid,Aperformanceevaluationoflocaldescriptors.TechnicalReport,acceptedtoPAMI.PDF
Mainquestions
?Wherewilltheinterestpointscomefrom?
-Whataresalientfeaturesthatwelldetectin
multipleviews?
?Howtodescribealocalregion?
?Howtoestablishcorrespondences,i.e.,
computematches?
Featuredescriptors
Weknowhowtodetectanddescribegoodpoints
Nextquestion:Howtomatchthem?
Featurematching
Givenafeatureinl1}howtofindthebestmatchinl2?
1.Definedistancefunctionthatcomparestwodescriptors
2.Testallthefeaturesinl2,findtheonewithmindistance
Featuredistance
Howtodefinethedifferencebetweentwofeatures,f2?
?SimpleapproachisSSD(t|,f2)
-sumofsquaredifferencesbetweenentriesofthetwodescriptors
-cangivegoodscorestoveryambiguous(bad)matches
12
Featuredistance
Howtodefinethedifferencebetweentwofeatures,f2?
?Betterapproach:ratiodistance=880(^,f2)/SSD(f),f?')
-f2isbestSSDmatchtoinl2
nd
-f2'is2bestSSDmatchtoiinl2
-givessmallvaluesforambiguousmatches
Evaluatingtheresults
Howcanwemeasuretheperformanceofafeaturematcher?
200
featuredistance
True/falsepositives
-50—
truematch
-75-
-2oq-
falsematch
featuredistance
Thedistancethresholdaffectsperformance
?Truepositives=#ofdetectedmatchesthatarecorrect
-Supposewewanttomaximizethese—howtochoosethreshold?
?Falsepositives=#ofdetectedmatchesthatareincorrect
-Supposewewanttominimizethese—howtochoosethreshold?
Evaluatingtheresults
Howcanwemeasuretheperformanceofafeaturematcher?
______#truepositives
#matchingfeatures(positives)
______#falsepositives______
#unmatchedfeatures(negatives)
Evaluatingtheresults
Howcanwemeasuretheperformanceofafeaturematcher?
ROCcurve("ReceiverOperatorCharacteristic")
______#truepositives
#matchingfeatures(positives)
______#falsepositives______
#unmatchedfeatures(negatives)
ROCCurves
?Generatedbycounting#current/incorrectmatches,fordifferentthreholds
?Wanttomaximizeareaunderthecurve(AUC)
?Usefulforcomparingdifferentfeaturematchingmethods
?Formoreinfo:http:〃en.wikipedia.orq/wiki/Receiveroperatingcharacteristic
Advancedlocalfeaturestopics
?Self-Similarity
?Space-Time
MatchingLocalSeif-SimilaritiesacrossImagesandVideos
EliShechimanMichalIrani
Dept,ofComputerScienceandAppliedMath
TheWeizmannInstituteofScience
76100Rehovot,Israel
Abstract
Wepresentanapproachformeasuringsimilaritybe-
tweenvisualentities(imagesorvideos)basedonmatch-
inginternalself-similarities.Whatiscorrelatedacross
images(oracrossvideosequences)istheinternallay-
outoflocalself-similarities(uptosomedistortions).e\ren
thoughthepatternsgeneratingthoselocalself-similarities
arequitedifferentineachoftheinuigesAideos.Thesein-
ternalself-similaritiesareefficientlycapturedbyacom-
9
paalocal^self-similaritydescriptorfmeasureddensely
throughouttheiniage/video,atmultiplescales,whileac-
cowuingforlocalandglobalgeometricdistortions.This
givesrisetomatchingcapabilitiesofcomplexvisualdata,
includingdetectionofobjectsinrealclutteredimagesusing
onlyroughhand-sketches,handlingtexturedobjeaswith
noclearboundaries,anddetectingcomplexactionsincha-
teredvideodatawithnopriorlearning.Wecompareour
measuretocommonlyusedimage-basedandvideo-based
similaritymeasures,anddemonstrateitsapplicabilitytoob-
jeadetection,retrieval,andactiondetection.
FiguiuLTheseimagesofthesameobject(aheart)doNOTshare
commonimageproperties(colors,textures,edges),butDOshare
asimilargeometriclayoutoflocaliruernalself-similarines.
InputimageCorrelationImage
surfacedescriptor
Figure3.Corresponding"-Self-similaritydescriptors''.We
showafewcorrespondingpoints(1,2,3)acrosstwoimagesofthe
sameobject,withtheir"self-simUarity"descriptors.Despitethe
largedifferenceinphotometricpropertiesbetweenthetwoimages,
theircorrespondingself-similarity"descriptorsarequitesimilar.
Figure4.Objectdetection,(a)Asingletemplateimage(aflower),
(b)Theimagesagainstwhichitwascomparedwiththecorre-
spondingdetections.Thecontinuouslikelihoodvaluesabovea
threshold(samethresholdforallimages)areshownsuperimposed
onthegrayscaleimages,displayingdetectionsofthetemplateat
correctlocations(redcorrespondstothehighestvalues).
⑶入
Figure6.Detectionusingasketch,(a)Ahand-sketchedtem-
plate.(b)Theimagesagainstwhichitwascomparedwiththe
correspondingdetections.
Image1Image2OurMethodGLOHShapeMutual
(template)(extendedSIFT)ContextInformation
旗INRIA
Humanactions
incomputervision
IvanLaptev
INRIARennes,France
ivan.laptev@inria.fr
Summerschool,June30-July11,2008,LotusHill,China
Motivation
Goal:
Interpretation
ofdynamic
scenes
...non-rigidobjectmotion...cameramotion...complexbackgroundmotion
Commonmethods:Commonproblems:
?Camerastabilization?ComplexBGmotion
?Segmentation?
?Changesinappearance
?TrackingQ一
=>Noglobalassumptionsaboutthescene
Space-time
Noglobalassumptions=>
Considerlocalspatio-temporalneighborhoods
Space-time
Noglobalassumptions=>
Considerlocalspatio-temporalneighborhoods
Space-Timeinterestpoints
Whatneighborhoodstoconsider?
HighimageLookatthe
Distinctive
=variationin=distributionof
neighborhoods
spaceandtimethegradient
Definitions:
/:R2xRROriginal
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲底料購銷合同范本
- 材料質(zhì)量要求和質(zhì)量標(biāo)準(zhǔn)合同
- 幼兒園教育筆記書寫培訓(xùn)
- 非接觸溫度計(jì)相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- 企業(yè)年度目標(biāo)達(dá)成規(guī)劃
- 學(xué)校用電應(yīng)急處理預(yù)案例文(5篇)
- 鎮(zhèn)小學(xué)職稱評聘方案(4篇)
- 從業(yè)人員安全生產(chǎn)責(zé)任制模版(3篇)
- 2024年員工年會發(fā)言稿(2篇)
- 堆浸場爆炸物品管理制度范文(2篇)
- 纏論基本概念圖解(推薦)
- 海瑞克英文翻譯
- 培訓(xùn)師經(jīng)常用到的七大培訓(xùn)方式及操作方法
- 魯教版美術(shù)九年級下冊教學(xué)設(shè)計(jì)
- 電力施工現(xiàn)場應(yīng)急預(yù)案
- 模具斜與蝕紋關(guān)系對照表
- 環(huán)氧自流平工程質(zhì)量驗(yàn)收單
- 大豆栽培技術(shù)PPT課件
- 導(dǎo)尿管相關(guān)尿路感染目標(biāo)性監(jiān)測方案
- 銷售手冊(共33頁).doc
- 美國最大的汽車俱樂部AAA
評論
0/150
提交評論