2023-2024學年吉林省重點中學數(shù)學九年級第一學期期末經(jīng)典試題含解析_第1頁
2023-2024學年吉林省重點中學數(shù)學九年級第一學期期末經(jīng)典試題含解析_第2頁
2023-2024學年吉林省重點中學數(shù)學九年級第一學期期末經(jīng)典試題含解析_第3頁
2023-2024學年吉林省重點中學數(shù)學九年級第一學期期末經(jīng)典試題含解析_第4頁
2023-2024學年吉林省重點中學數(shù)學九年級第一學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年吉林省重點中學數(shù)學九年級第一學期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知Rt△ABC中,∠C=90o,AC=4,BC=6,那么下列各式中,正確的是()A.sinA= B.cosA= C.tanA= D.tanB=2.下列成語描述的事件為隨機事件的是()A.守株待兔 B.水中撈月 C.甕中捉鱉 D.水漲船高3.如圖,在中,,垂足為點,一直角三角板的直角頂點與點重合,這塊三角板饒點旋轉,兩條直角邊始終與邊分別相交于,則在運動過程中,與的關系是()A.一定相似 B.一定全等 C.不一定相似 D.無法判斷4.在中,,已知和,則下列關系式中正確的是()A. B. C. D.5.下列事件中,必然事件是()A.一定是正數(shù)B.八邊形的外角和等于C.明天是晴天D.中秋節(jié)晚上能看到月亮6.把拋物線向右平移l個單位,然后向下平移3個單位,則平移后拋物線的解析式為()A. B.C. D.7.如圖,一張矩形紙片ABCD的長,寬將紙片對折,折痕為EF,所得矩形AFED與矩形ABCD相似,則a:A.2:1 B.:1 C.3: D.3:28.目前,支付寶平臺入駐了不少的理財公司,推出了一些理財產(chǎn)品.李阿姨用10000元本金購買了一款理財產(chǎn)品,到期后自動續(xù)期,兩期結束后共收回本息10926元設此款理財產(chǎn)品每期的平均收益率為x,則根據(jù)題意可得方程()A. B.C. D.9.方程x2+x-12=0的兩個根為()A.x1=-2,x2=6 B.x1=-6,x2=2 C.x1=-3,x2=4 D.x1=-4,x2=310.下列四個數(shù)中,最小數(shù)的是()A.0 B.﹣1 C. D.二、填空題(每小題3分,共24分)11.如圖,在4×4的正方形網(wǎng)絡中,已將部分小正方形涂上陰影,有一個小蟲落到網(wǎng)格中,那么小蟲落到陰影部分的概率是____.12.如圖,圓錐的底面半徑OB=6cm,高OC=8cm,則該圓錐的側面積是_____cm1.13.如圖,A是反比例函數(shù)圖象上的一點,點B、D在軸正半軸上,是關于點D的位似圖形,且與的位似比是1:3,的面積為1,則的值為____.14.如圖,在中,點D、E分別在AB、AC邊上,,,,則__________.15.《孫子算經(jīng)》是我國古代重要的數(shù)學著作,成書于約一千五百年前,其中有道歌謠算題:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問桿長幾何?”歌謠的意思是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五,同時立一根一尺五的小標桿,它的影長五寸(提示:仗和尺是古代的長度單位,1丈=10尺,1尺=10寸),可以求出竹竿的長為_____尺.16.對于任何實數(shù),,,,我們都規(guī)定符號的意義是,按照這個規(guī)定請你計算:當時,的值為________.17.在平面直角坐標系中,拋物線y=x2的圖象如圖所示.已知A點坐標為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4……,依次進行下去,則點A2019的坐標為_______.18.一運動員推鉛球,鉛球經(jīng)過的路線為如圖所示的拋物線,點(4,3)為該拋物線的頂點,則該拋物線所對應的函數(shù)式為_____.三、解答題(共66分)19.(10分)富平因取“富庶太平”之意而得名,是華夏文明重要發(fā)祥地之一.某班舉行關于“美麗的富平”的演講活動.小明和小麗都想第一個演講,于是他們通過做游戲來決定誰第一個來演.講游戲規(guī)則是:在一個不透明的袋子中有一個黑球a和兩個白球b、c,(除顏色外其它均相同),小麗從袋子中摸出一個球,放回后攪勻,小明再從袋子中摸出一個球,若兩次摸到的球顏色相同,則小麗獲勝,否則小明獲勝,請你用樹狀圖或列表的方法分別求出小麗與小明獲勝的概率,并說明這個游戲規(guī)則對雙方公平嗎?20.(6分)如圖,在平面直角坐標系中,四邊形OABC的頂點坐標分別為O(0,0),A(6,0),B(4,3),C(0,3).動點P從點O出發(fā),以每秒個單位長度的速度沿邊OA向終點A運動;動點Q從點B同時出發(fā),以每秒1個單位長度的速度沿邊BC向終點C運動.設運動的時間為t秒,PQ2=y(tǒng).(1)直接寫出y關于t的函數(shù)解析式及t的取值范圍:;(2)當PQ=時,求t的值;(3)連接OB交PQ于點D,若雙曲線(k≠0)經(jīng)過點D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.21.(6分)如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.(1)求證:BC是⊙O的切線;(2)已知∠BAO=25°,點Q是弧AmB上的一點.①求∠AQB的度數(shù);②若OA=18,求弧AmB的長.22.(8分)如圖,已知△ABC.(1)尺規(guī)作圖,畫出線段AB的垂直平分線(不寫作法,保留作圖痕跡);(2)設AB的垂直平分線與BA交于點D,與BC交于點E,連結AE.若∠B=40°,求∠BEA的度數(shù).23.(8分)某廣場有一個小型噴泉,水流從垂直于地面的水管OA噴出,OA長為1.5米.水流在各個方向上沿形狀相同的拋物線路徑落到地面上,某方向上拋物線路徑的形狀如圖所示,落點B到O的距離為3米.建立平面直角坐標系,水流噴出的高度y(米)與水平距離x(米)之間近似滿足函數(shù)關系(1)求y與x之間的函數(shù)關系式;(2)求水流噴出的最大高度.24.(8分)如圖1,在矩形ABCD中,AB=6cm,BC=8cm,如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為每秒2cm和1cm,F(xiàn)Q⊥BC,分別交AC、BC于點P和Q,設運動時間為t秒(0<t<4).(1)連接EF,若運動時間t=秒時,求證:△EQF是等腰直角三角形;(2)連接EP,當△EPC的面積為3cm2時,求t的值;(3)在運動過程中,當t取何值時,△EPQ與△ADC相似.25.(10分)已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(-2,0),與反比例函數(shù)在第一象限內的圖象交于點B(2,n),連接BO,若.(1)求該反比例函數(shù)的解析式和直線AB的解析式;(2)若直線AB與y軸的交點為C,求的面積.(3)在第一象限內,求當一次函數(shù)值大于反比例函數(shù)值時的反比例函數(shù)值取值范圍.26.(10分)某市政府高度重視教育工作,財政資金優(yōu)先保障教育,2017年新校舍建設投入資金8億元,2019年新校舍建設投入資金11.52億元。求該市政府從2017年到2019年對校舍建設投入資金的年平均增長率.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】本題可以利用銳角三角函數(shù)的定義以及勾股定理分別求解,再進行判斷即可.【詳解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此選項錯誤;B、cosA=,故此選項錯誤;C、tanA=,故此選項錯誤;D、tanB=,故此選項正確.故選:D.

【點睛】此題主要考查了銳角三角函數(shù)的定義以及勾股定理,熟練應用銳角三角函數(shù)的定義是解決問題的關鍵.2、A【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A.守株待兔是隨機事件,故A符合題意;B.水中撈月是不可能事件,故B不符合題意;C.甕中捉鱉是必然事件,故C不符合題意;D.水漲船高是必然事件,故D不符合題意;故選A.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、A【分析】根據(jù)已知條件可得出,,再結合三角形的內角和定理可得出,從而可判定兩三角形一定相似.【詳解】解:由已知條件可得,,∵,∴,∵,∴,繼而可得出,∴.故選:A.【點睛】本題考查的知識點是相似三角形的判定定理,靈活利用三角形內角和定理以及余角定理是解此題的關鍵.4、B【分析】根據(jù)三角函數(shù)的定義即可作出判斷.【詳解】∵在Rt△ABC中,∠C=90°,∠C的對邊為c,∠A的對邊為a,∴sinA=,∴a=c?sinA,.故選:B.【點睛】考查了銳角三角函數(shù)的定義,正確理解直角三角形邊角之間的關系.在直角三角形中,如果已知一邊及其中的一個銳角,就可以表示出另外的邊.5、B【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】A、a2一定是非負數(shù),則a2一定是正數(shù)是隨機事件;B、八邊形的外角和等于360°是必然事件;C、明天是晴天是隨機事件;D、中秋節(jié)晚上能看到月亮是隨機事件;故選B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、D【分析】根據(jù)題意原拋物線的頂點坐標為(0,0),根據(jù)平移規(guī)律得平移后拋物線頂點坐標為(1,-3),根據(jù)拋物線的頂點式求解析式.【詳解】解:拋物線形平移不改變解析式的二次項系數(shù),平移后頂點坐標為(1,-3),∴平移后拋物線解析式為.故選:D.【點睛】本題考查拋物線的平移與拋物線解析式的聯(lián)系,關鍵是把拋物線的平移轉化為頂點的平移,利用頂點式求解析式.7、B【分析】根據(jù)折疊性質得到AF=AB=a,再根據(jù)相似多邊形的性質得到,即,然后利用比例的性質計算即可.【詳解】解:∵矩形紙片對折,折痕為EF,

∴AF=AB=a,

∵矩形AFED與矩形ABCD相似,

∴,即,

∴a∶b=.

所以答案選B.【點睛】本題考查了相似多邊形的性質:相似多邊形對應邊的比叫做相似比.相似多邊形的對應角相等,對應邊的比相等.8、B【分析】根據(jù)題意,找出等量關系列出方程,即可得到答案.【詳解】解:根據(jù)題意,設此款理財產(chǎn)品每期的平均收益率為x,則;故選擇:B.【點睛】本題考查了一元二次方程的應用——增長率問題,解題的關鍵是找到等量關系,列出方程.9、D【解析】試題分析:將x2+x﹣12分解因式成(x+4)(x﹣1),解x+4=0或x﹣1=0即可得出結論.x2+x﹣12=(x+4)(x﹣1)=0,則x+4=0,或x﹣1=0,解得:x1=﹣4,x2=1.考點:解一元二次方程-因式分解法10、B【分析】先根據(jù)有理數(shù)的大小比較法則比較數(shù)的大小,再得出答案即可.【詳解】解:,∴最小的數(shù)是﹣1,故選:B.【點睛】本題考查了有理數(shù)的大小比較,能熟記有理數(shù)的大小比較法則的內容是解此題的關鍵,注意:正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù),兩個負數(shù)比較大小,其絕對值大的反而小.二、填空題(每小題3分,共24分)11、【解析】本題應分別求出正方形的總面積和陰影部分的面積,用陰影部分的面積除以總面積即可得出概率.【詳解】解:小蟲落到陰影部分的概率=,故答案為:.【點睛】本題考查的是概率的公式,用到的知識點為:概率=相應的面積與總面積之比.12、60π【分析】先利用勾股定理求出BC的長度,然后利用扇形的面積公式求解即可.【詳解】解:∵它的底面半徑OB=6cm,高OC=8cm.∴BC==10(cm),∴圓錐的側面積是:(cm1).故答案為:60π.【點睛】本題主要考查勾股定理及扇形的面積公式,掌握勾股定理及扇形的面積公式是解題的關鍵.13、8【分析】根據(jù)△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似比是1:3,得出,進而得出假設BD=x,AE=4x,D0=3x,AB=y,根據(jù)△ABD的面積為1,求出xy=2即可得出答案.【詳解】過A作AE⊥x軸,∵△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似是1:3,∴,∴OE=AB,∴,設BD=x,AB=y∴DO=3x,AE=4x,C0=3y,∵△ABD的面積為1,∴xy=1,∴xy=2,∴AB?AE=4xy=8,故答案為:8.【點睛】此題考查位似變換,反比例函數(shù)系數(shù)k的幾何意義,待定系數(shù)法求反比例函數(shù)解析式,解題關鍵在于作輔助線.14、【分析】由,,即可求得的長,又由,根據(jù)平行線分線段成比例定理,可得,則可求得答案.【詳解】解:,,,,,.故答案為:.【點睛】此題考查了相似三角形的判定和性質,此題比較簡單,注意掌握比例線段的對應關系是解此題的關鍵.15、3【分析】根據(jù)同一時刻物高與影長成正比可得出結論.【詳解】解:設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=2.5尺,∴,解得x=3(尺).故答案為:3.【點睛】本題考查的是同一時刻物高與影長成正比,在解題時注意單位要統(tǒng)一.16、1【分析】先解變形為,再根據(jù),把轉化為普通運算,然后把代入計算即可.【詳解】∵,∴,∵,∴=(x+1)(x-1)-3x(x-2)=

x2-1-3x2+6x=-2x2+6x-1=-2(x2-3x)-1=-2×(-1)-1=1.故答案為1.【點睛】本題考查了信息遷移,整式的混合運算及添括號法則,17、(-1010,10102)【分析】根據(jù)二次函數(shù)性質可得出點A1的坐標,求得直線A1A2為y=x+2,聯(lián)立方程求得A2的坐標,即可求得A3的坐標,同理求得A4的坐標,即可求得A5的坐標,根據(jù)坐標的變化找出變化規(guī)律,即可找出點A2019的坐標.【詳解】∵A點坐標為(1,1),

∴直線OA為y=x,A1(-1,1),

∵A1A2∥OA,

∴直線A1A2為y=x+2,

解得或,

∴A2(2,4),

∴A3(-2,4),

∵A3A4∥OA,

∴直線A3A4為y=x+6,

解得或,

∴A4(3,9),

∴A5(-3,9)

…,

∴A2019(-1010,10102),

故答案為(-1010,10102).【點睛】此題考查二次函數(shù)圖象上點的坐標特征、一次函數(shù)的圖象以及交點的坐標,根據(jù)坐標的變化找出變化規(guī)律是解題的關鍵.18、y=-(x﹣4)2+1【分析】根據(jù)二次函數(shù)的頂點式即可求出拋物線的解析式.【詳解】解:根據(jù)題意,得設拋物線對應的函數(shù)式為y=a(x﹣4)2+1把點(0,)代入得:16a+1=解得a=﹣,∴拋物線對應的函數(shù)式為y=﹣(x﹣4)2+1故答案為:y=﹣(x﹣4)2+1.【點睛】本題考查了用待定系數(shù)法利用頂點坐標式求函數(shù)的方法,同時還考查了方程的解法等知識,難度不大.三、解答題(共66分)19、小麗為,小軍為,這個游戲不公平,見解析【分析】畫出樹狀圖,得出總情況數(shù)及兩次模到的球顏色相同和不同的情況數(shù),即可得小麗與小明獲勝的概率,根據(jù)概率即可得游戲是否公平.【詳解】根據(jù)題意兩圖如下:共有種等情況數(shù),其中兩次模到的球顏色相同的情況數(shù)有種,不同的有種,小麗獲勝的概率是小軍獲勝的概率是,所以這個游戲不公平.【點睛】本題考查游戲公平性的判斷,判斷游戲的公平性要計算每個參與者獲勝的概率,概率相等則游戲公平,否則游戲不公平,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)(0≤t≤4);(2)t1=2,t2=;(2)經(jīng)過點D的雙曲線(k≠0)的k值不變,為.【分析】(1)過點P作PE⊥BC于點E,由點P,Q的出發(fā)點、速度及方向可找出當運動時間為t秒時點P,Q的坐標,進而可得出PE,EQ的長,再利用勾股定理即可求出y關于t的函數(shù)解析式(由時間=路程÷速度可得出t的取值范圍);

(2)將PQ=代入(1)的結論中可得出關于t的一元二次方程,解之即可得出結論;

(2)連接OB,交PQ于點D,過點D作DF⊥OA于點F,求得點D的坐標,再利用反比例函數(shù)圖象上點的坐標特征即可求出k值,此題得解.【詳解】解:(1)過點P作PE⊥BC于點E,如圖1所示.

當運動時間為t秒時(0≤t≤4)時,點P的坐標為(t,0),點Q的坐標為(4-t,2),

∴PE=2,EQ=|4-t-t|=|4-t|,

∴PQ2=PE2+EQ2=22+|4-t|2=t2-20t+21,

∴y關于t的函數(shù)解析式及t的取值范圍:y=t2?20t+21(0≤t≤4);

故答案為:y=t2?20t+21(0≤t≤4).

(2)當PQ=時,t2?20t+21=()2

整理,得1t2-16t+12=0,

解得:t1=2,t2=.

(2)經(jīng)過點D的雙曲線y=(k≠0)的k值不變.

連接OB,交PQ于點D,過點D作DF⊥OA于點F,如圖2所示.

∵OC=2,BC=4,

∴OB==1.

∵BQ∥OP,

∴△BDQ∽△ODP,

∴,

∴OD=2.

∵CB∥OA,

∴∠DOF=∠OBC.

在Rt△OBC中,sin∠OBC=,cos∠OBC==,

∴OF=OD?cos∠OBC=2×=,DF=OD?sin∠OBC=2×=,

∴點D的坐標為(,),

∴經(jīng)過點D的雙曲線y=(k≠0)的k值為×=..【點睛】此題考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定與性質、平行線的性質以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是:(1)利用勾股定理,找出y關于t的函數(shù)解析式;(2)通過解一元二次方程,求出當PQ=時t的值;(2)利用相似三角形的性質及解直角三角形,找出點D的坐標.21、(1)見解析;(2)①∠AQB=65°,②l弧AmB=23π.【解析】(1)連接OB,根據(jù)等腰三角形的性質得到∠OAB=∠OBA,∠CPB=∠CBP,再根據(jù)∠PAO+∠APO=90°,繼而得出∠OBC=90°,問題得證;(2)①根據(jù)等腰三角形的性質可得∠ABO=25°,再根據(jù)三角形內角和定理可求得∠AOB的度數(shù),繼而根據(jù)圓周角定理即可求得答案;②根據(jù)弧長公式進行計算即可得.【詳解】(1)連接OB,∵CP=CB,∴∠CPB=∠CBP,∵OA⊥OC,∴∠AOC=90°,∵OA=OB,∴∠OAB=∠OBA,∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°,∴∠OBC=90°,∴BC是⊙O的切線;(2)①∵∠BAO=25°,OA=OB,∴∠OBA=∠BAO=25°,∴∠AOB=180°-∠BAO-∠OBA=130°,∴∠AQB=∠AOB=65°;②∵∠AOB=130°,OB=18,∴l(xiāng)弧AmB==23π.【點睛】本題考查了圓周角定理,切線的判定等知識,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.22、(1)見解析;(2)100°【分析】(1)根據(jù)垂直平分線的尺規(guī)作圖法,即可;(2)根據(jù)垂直平分線的性質定理,可得AE=BE,進而即可求出答案.【詳解】(1)線段AB的垂直平分線如圖所示;(2)∵DE是AB的垂直平分線,∴AE=BE,∴∠BAE=∠B=40°,∴∠BEA=180°﹣∠B﹣∠BAE,=180°﹣40°﹣40°=100°.答:∠BEA的度數(shù)為100°.【點睛】本題主要考查尺規(guī)作中垂線以及中垂線的性質定理,掌握中垂線的性質定理是解題的關鍵.23、(1)(2)水流噴出的最大高度為2米【分析】(1)建立平面直角坐標系,待定系數(shù)法解題,(2)求出頂點坐標即可.【詳解】解:(1)由題意可得,拋物線經(jīng)過(0,1.5)和(3,0),解得:a=-0.5,c=1.5,即函數(shù)表達式為y=.(2)解:∴當x=1時,y取得最大值,此時y=2.答:水流噴出的最大高度為2米.【點睛】本題考查了二次函數(shù)的解析式的求法,頂點坐標的應用,中等難度,建立平面直角坐標系是解題關鍵.24、(1)詳見解析;(2)2秒;(3)2秒或秒或秒.【分析】(1)由題意通過計算發(fā)現(xiàn)EQ=FQ=6,由此即可證明;(2)根據(jù)題意利用三角形的面積建立方程即可得出結論;(3)由題意分點E在Q的左側以及點E在Q的右側這兩種情況,分別進行分析即可得出結論.【詳解】解:(1)證明:若運動時間t=秒,則BE=2×=(cm),DF=(cm),∵四邊形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四邊形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面積為3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即t的值為2秒;(3)解:分兩種情況:Ⅰ.如圖1中,點E在Q的左側.①∠PEQ=∠CAD時,△EQP∽△ADC,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論