2023-2024學(xué)年廣東省東莞市長安實驗中學(xué)九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
2023-2024學(xué)年廣東省東莞市長安實驗中學(xué)九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
2023-2024學(xué)年廣東省東莞市長安實驗中學(xué)九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
2023-2024學(xué)年廣東省東莞市長安實驗中學(xué)九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
2023-2024學(xué)年廣東省東莞市長安實驗中學(xué)九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年廣東省東莞市長安實驗中學(xué)九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.若關(guān)于的一元二次方程有兩個相等的實數(shù)根,則的值為()A. B. C. D.2.相鄰兩根電桿都用鍋索在地面上固定,如圖,一根電桿鋼索系在離地面4米處,另一根電桿鋼索系在離地面6米處,則中間兩根鋼索相交處點P離地面()A.2.4米B.8米C.3米D.必須知道兩根電線桿的距離才能求出點P離地面距離3.為了測量某沙漠地區(qū)的溫度變化情況,從某時刻開始記錄了12個小時的溫度,記時間為(單位:)溫度為(單位:).當(dāng)時,與的函數(shù)關(guān)系是,則時該地區(qū)的最高溫度是()A. B. C. D.4.已知平面直角坐標系中,點關(guān)于原點對稱的點的坐標是()A. B. C. D.5.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次6.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°7.下列成語所描述的是隨機事件的是()A.竹籃打水 B.瓜熟蒂落 C.??菔癄€ D.不期而遇8.已知反比例函數(shù)的解析式為,則的取值范圍是A. B. C. D.9.拋擲一枚質(zhì)地均勻的硬幣,若拋擲6次都是正面朝上,則拋擲第7次正面朝上的概率是()A.小于 B.等于 C.大于 D.無法確定10.一個不透明的袋子中裝有2個紅球、3個白球,每個球除顏色外都相同.從中任意摸出3個球,下列事件為必然事件的是()A.至少有1個球是紅球 B.至少有1個球是白球C.至少有2個球是紅球 D.至少有2個球是白球二、填空題(每小題3分,共24分)11.已知一元二次方程的一個根為1,則__________.12.在Rt△ABC中,∠C=90°,若sinA=,則cosB=_____.13.如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____.14.如圖,在半徑為5的中,弦,,垂足為點,則的長為__________.15.小燕拋一枚硬幣10次,有7次正面朝上,當(dāng)她拋第11次時,正面向上的概率為_________.16.已知a、b是一元二次方程x2+x﹣1=0的兩根,則a+b=_____.17.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(如圖).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=______.18.如圖,在Rt△ABC中∠B=50°,將△ABC繞直角頂點A順時針旋轉(zhuǎn)得到△ADE.當(dāng)點C在B1C1邊所在直線上時旋轉(zhuǎn)角∠BAB1=____度.三、解答題(共66分)19.(10分)閱讀理解:如圖,在紙面上畫出了直線l與⊙O,直線l與⊙O相離,P為直線l上一動點,過點P作⊙O的切線PM,切點為M,連接OM、OP,當(dāng)△OPM的面積最小時,稱△OPM為直線l與⊙O的“最美三角形”.解決問題:(1)如圖1,⊙A的半徑為1,A(0,2),分別過x軸上B、O、C三點作⊙A的切線BM、OP、CQ,切點分別是M、P、Q,下列三角形中,是x軸與⊙A的“最美三角形”的是.(填序號)①ABM;②AOP;③ACQ(2)如圖2,⊙A的半徑為1,A(0,2),直線y=kx(k≠0)與⊙A的“最美三角形”的面積為,求k的值.(3)點B在x軸上,以B為圓心,為半徑畫⊙B,若直線y=x+3與⊙B的“最美三角形”的面積小于,請直接寫出圓心B的橫坐標的取值范圍.20.(6分)如圖,在平面直角坐標系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.(1)求P點的坐標;(2)若△POQ的面積為9,求k的值.21.(6分)如圖,已知拋物線y=﹣x2+(m﹣1)x+m的對稱軸為x=,請你解答下列問題:(1)m=,拋物線與x軸的交點為.(2)x取什么值時,y的值隨x的增大而減???(3)x取什么值時,y<0?22.(8分)某網(wǎng)點嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:銷售量n(件)銷售單價m(元/件)(1)請計算第幾天該商品單價為25元/件?(2)求網(wǎng)店第幾天銷售額為792元?(3)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;這30天中第幾天獲得的利潤最大?最大利潤是多少?23.(8分)某校為了豐富學(xué)生課余生活,計劃開設(shè)以下社團:A.足球、B.機器人、C.航模、D.繪畫,學(xué)校要求每人只能參加一個社團小麗和小亮準備隨機報名一個項目.(1)求小亮選擇“機器人”社團的概率為______;(2)請用樹狀圖或列表法求兩人至少有一人參加“航?!鄙鐖F的概率.24.(8分)如圖,△ABC是邊長為2的等邊三角形,點D與點B分別位于直線AC的兩側(cè),且AD=AC,聯(lián)結(jié)BD、CD,BD交直線AC于點E.(1)當(dāng)∠CAD=90°時,求線段AE的長.(2)過點A作AH⊥CD,垂足為點H,直線AH交BD于點F,①當(dāng)∠CAD<120°時,設(shè),(其中表示△BCE的面積,表示△AEF的面積),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;②當(dāng)時,請直接寫出線段AE的長.25.(10分)如圖,拋物線y=ax2+bx過A(4,0)B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H(1)求拋物線的解析式.(2)直接寫出點C的坐標,并求出△ABC的面積.(3)點P是拋物線BA段上一動點,當(dāng)△ABP的面積為3時,求出點P的坐標.26.(10分)某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,規(guī)定試銷期間銷售單價不低于成本價.據(jù)試銷發(fā)現(xiàn),月銷量(千克)與銷售單價(元)符合一次函數(shù).若該商店獲得的月銷售利潤為元,請回答下列問題:(1)請寫出月銷售利潤與銷售單價之間的關(guān)系式(關(guān)系式化為一般式);(2)在使顧客獲得實惠的條件下,要使月銷售利潤達到8000元,銷售單價應(yīng)定為多少元?(3)若獲利不高于,那么銷售單價定為多少元時,月銷售利潤達到最大?

參考答案一、選擇題(每小題3分,共30分)1、B【分析】若一元二次方程有兩個相等的實數(shù)根,則根的判別式△=b2?4ac=0,建立關(guān)于k的等式,求出k.【詳解】解:∵方程有兩個相等的實數(shù)根,∴△=b2?4ac=62?4×1×k=36?4k=0,解得:k=1.故選:B.【點睛】本題考查一元二次方程根的情況與判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0時,方程有兩個不相等的實數(shù)根;(2)△=0時,方程有兩個相等的實數(shù)根;(3)△<0時,方程沒有實數(shù)根.2、A【分析】如圖,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得對應(yīng)高CE與BE之比,根據(jù)CD∥PE可得△BPE∽△BDC,利用對應(yīng)邊成比例可得比例式,把相關(guān)數(shù)值代入求解即可.【詳解】如圖,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴,∴,∵CD∥PE,∴△BPE∽△BDC,∴,∴,解得:PE=2.1.故選:A.【點睛】本題考查相似三角形的應(yīng)用,平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形與原三角形相似;正確作出輔助線構(gòu)建相似三角形并熟練掌握相似三角形的判定定理是解題關(guān)鍵.3、D【分析】利用配方法求最值.【詳解】解:∵a=-1<0∴當(dāng)t=5時,y有最大值為36故選:D【點睛】本題考查配方法求最值,掌握配方法的方法正確計算是本題的解題關(guān)鍵.4、C【解析】∵在平面直角坐標系中,關(guān)于原點對稱的兩個點的橫坐標與橫坐標、縱坐標與縱坐標都互為相反數(shù),∴點P(1,-2)關(guān)于原點的對稱點坐標為(-1,2),故選C.5、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.6、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).7、D【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、竹籃打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、??菔癄€,是不可能事件;D、不期而遇,是隨機事件;故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、C【分析】根據(jù)反比例函數(shù)的定義可得|a|-2≠0,可解得.【詳解】根據(jù)反比例函數(shù)的定義可得|a|-2≠0,可解得a≠±2.故選C.【點睛】本題考核知識點:反比例函數(shù)定義.解題關(guān)鍵點:理解反比例函數(shù)定義.9、B【分析】利用概率的意義直接得出答案.【詳解】解:拋擲一枚質(zhì)地均勻的硬幣,正面朝上概率等于,前6次的結(jié)果都是正面朝上,不影響下一次拋擲正面朝上概率,則第7次拋擲這枚硬幣,正面朝上的概率為:,故選:.【點睛】此題主要考查了概率的意義,正確把握概率的定義是解題關(guān)鍵.10、B【解析】A.至少有1個球是紅球是隨機事件,選項錯誤;B.至少有1個球是白球是必然事件,選項正確;C.至少有2個球是紅球是隨機事件,選項錯誤;D.至少有2個球是白球是隨機事件,選項錯誤.故選B.二、填空題(每小題3分,共24分)11、-4【分析】將x=1代入方程求解即可.【詳解】將x=1代入方程得4+a=0,解得a=-4,故答案為:-4.【點睛】此題考查一元二次方程的解,使方程左右兩邊相等的未知數(shù)的值是方程的解,已知方程的解時將解代入方程求參數(shù)即可.12、.【解析】根據(jù)一個角的余弦等于它余角的正弦,可得答案.【詳解】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案為.【點睛】本題考查了互余兩角的三角函數(shù),利用一個角的余弦等于它余角的正弦是解題關(guān)鍵.13、【分析】連接OB和AC交于點D,根據(jù)菱形及直角三角形的性質(zhì)先求出AC的長及∠AOC的度數(shù),然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOC-S菱形ABCO可得答案.【詳解】連接OB和AC交于點D,如圖所示:∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=則圖中陰影部分面積為S扇形AOC﹣S菱形ABCO=故答案為【點睛】本題考查扇形面積的計算及菱形的性質(zhì),解題關(guān)鍵是熟練掌握菱形的面積和扇形的面積,有一定的難度.14、4【分析】連接OA,根據(jù)垂徑定理得到AP=AB,利用勾股定理得到答案.【詳解】連接OA,∵AB⊥OP,∴AP=AB=×6=3,∠APO=90°,又OA=5,∴OP===4,故答案為:4.【點睛】本題考查的是垂徑定理的應(yīng)用,掌握垂直于弦的直徑平分這條弦是解題的關(guān)鍵.15、【分析】求出一次拋一枚硬幣正面朝上的概率即可.【詳解】解:∵拋硬幣正反出現(xiàn)的概率是相同的,不論拋多少次出現(xiàn)正面或反面的概率是一致的,∴正面向上的概率為.故答案為.【點睛】本題考查的是概率的公式,注意拋硬幣只有兩種情況,每次拋出的概率都是一致的,與次數(shù)無關(guān).16、-1【分析】直接根據(jù)兩根之和的公式可得答案.【詳解】∵a、b是一元二次方程x2+x﹣1=0的兩根,∴a+b=﹣1,故答案為:﹣1.【點睛】此題考查一元二次方程根與系數(shù)的公式,熟記公式并熟練解題是關(guān)鍵.17、80°或120°【分析】本題可以圖形的旋轉(zhuǎn)問題轉(zhuǎn)化為點B繞D點逆時針旋轉(zhuǎn)的問題,故可以D點為圓心,DB長為半徑畫弧,第一次與原三角形交于斜邊AB上的一點B′,交直角邊AC于B″,此時DB′=DB,DB″=DB=2CD,由等腰三角形的性質(zhì)求旋轉(zhuǎn)角∠BDB′的度數(shù),在Rt△B″CD中,解直角三角形求∠CDB″,可得旋轉(zhuǎn)角∠BDB″的度數(shù).【詳解】解:如圖,在線段AB取一點B′,使DB=DB′,在線段AC取一點B″,使DB=DB″,∴①旋轉(zhuǎn)角m=∠BDB′=180°-∠DB′B-∠B=180°-2∠B=80°,②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,旋轉(zhuǎn)角∠BDB″=180°-∠CDB″=120°.故答案為80°或120°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.運用含30度的直角三角形三邊的關(guān)系也是解決問題的關(guān)鍵.18、100【分析】根據(jù)Rt△ABC中∠B=50°,推出∠BCA=40°,根據(jù)旋轉(zhuǎn)的性質(zhì)可知,AC=AC1,∠BCA=∠C1=40°,求出∠CAC1的度數(shù),即可求出∠BAB1的度數(shù).【詳解】∵Rt△ABC中∠B=50°,∴∠BCA=40°,∵△ABC繞直角頂點A順時針旋轉(zhuǎn)得到△ADE.當(dāng)點C在B1C1邊所在直線上,∴∠C1=∠BCA=40°,AC=AC1,∠CAB=∠C1AB1,∴∠ACC1=∠C1=40°,∴∠BAB1=∠CAC1=100°,故答案為:100.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)和等腰三角形的判定和性質(zhì),熟練掌握其判定和性質(zhì)是解題的關(guān)鍵.三、解答題(共66分)19、(1)②;(2)±1;(3)<<或<<【分析】(1)本題先利用切線的性質(zhì),結(jié)合勾股定理以及三角形面積公式將面積最值轉(zhuǎn)化為線段最值,了解最美三角形的定義,根據(jù)圓心到直線距離最短原則解答本題.(2)本題根據(jù)k的正負分類討論,作圖后根據(jù)最美三角形的定義求解EF,利用勾股定理求解AF,進一步確定∠AOF度數(shù),最后利用勾股定理確定點F的坐標,利用待定系數(shù)法求k.(3)本題根據(jù)⊙B在直線兩側(cè)不同位置分類討論,利用直線與坐標軸的交點坐標確定∠NDB的度數(shù),繼而按照最美三角形的定義,分別以△BND,△BMN為媒介計算BD長度,最后與OD相減求解點B的橫坐標范圍.【詳解】(1)如下圖所示:∵PM是⊙O的切線,∴∠PMO=90°,當(dāng)⊙O的半徑OM是定值時,,∵,∴要使面積最小,則PM最小,即OP最小即可,當(dāng)OP⊥時,OP最小,符合最美三角形定義.故在圖1三個三角形中,因為AO⊥x軸,故△AOP為⊙A與x軸的最美三角形.故選:②.(2)①當(dāng)k<0時,按題意要求作圖并在此基礎(chǔ)作FM⊥x軸,如下所示:按題意可得:△AEF是直線y=kx與⊙A的最美三角形,故△AEF為直角三角形且AF⊥OF.則由已知可得:,故EF=1.在△AEF中,根據(jù)勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根據(jù)勾股定理可得:MF=MO=1,故F(-1,1),將F點代入y=kx可得:.②當(dāng)k>0時,同理可得k=1.故綜上:.(3)記直線與x、y軸的交點為點D、C,則,,①當(dāng)⊙B在直線CD右側(cè)時,如下圖所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直線與⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半徑為,∴.當(dāng)直線CD與⊙B相切時,,因為直線CD與⊙B相離,故BN>,此時BD>2,所以O(shè)B=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此時可利用勾股定理算得BD<,<=,則<<.②當(dāng)⊙B在直線CD左側(cè)時,同理可得:<<.故綜上:<<或<<.【點睛】本題考查圓與直線的綜合問題,屬于創(chuàng)新題目,此類型題目解題關(guān)鍵在于了解題干所給示例,涉及動點問題時必須分類討論,保證不重不漏,題目若出現(xiàn)最值問題,需要利用轉(zhuǎn)化思想將面積或周長最值轉(zhuǎn)化為線段最值以降低解題難度,求解幾何線段時勾股定理極為常見.20、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x軸,則點P的縱坐標為2,然后把y=2代入y=得到對應(yīng)的自變量的值,從而得到P點坐標;(2)由于S△POQ=S△OMQ+S△OMP,根據(jù)反比例函數(shù)k的幾何意義得到|k|+×|6|=9,然后解方程得到滿足條件的k的值.【詳解】(1)∵PQ∥x軸,∴點P的縱坐標為2,把y=2代入y=得x=3,∴P點坐標為(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【點睛】本題主要考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)k的幾何意義是解題的關(guān)鍵.21、(1)2;(﹣1,1),(2,1);(2)x>;(3)x<﹣1或x>2【分析】(1)利用拋物線的對稱軸方程得到?=,解方程得到m的值,從而得到y(tǒng)=?x2+x+2,然后解方程?x2+x+2=1得拋物線與x軸的交點;(2)根據(jù)二次函數(shù)的性質(zhì)求解;(3)結(jié)合函數(shù)圖象,寫出拋物線在x軸下方所對應(yīng)的自變量的范圍即可.【詳解】解:(1)拋物線的對稱軸為直線x=?=,∴m=2,拋物線解析式為y=﹣x2+x+2,當(dāng)y=1時,﹣x2+x+2=1,解得x1=﹣1,x2=2,∴拋物線與x軸的交點為(﹣1,1),(2,1);(2)由函數(shù)圖象可知,當(dāng)x>時,y的值隨x的增大而減??;(3)由函數(shù)圖象可知,當(dāng)x<﹣1或x>2時,y<1.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠1)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).22、(1)第10天時該商品的銷售單價為25元/件;(2)網(wǎng)店第26天銷售額為792元;(3);這30天中第15天獲得的利潤最大,最大利潤是元.【分析】(1)將m=25代入m=20+x,求得x即可;(2)令,解得方程即可;(3)根據(jù)“總利潤=單件利潤×銷售量”可得函數(shù)解析式,將所得函數(shù)解析式配方成頂點式后,根據(jù)二次函數(shù)的性質(zhì)即可得.【詳解】解:(1)當(dāng)時,,解得:,所以第10天時該商品的銷售單價為25元/件;(2)根據(jù)題意,列方程為:,解得(舍去)答:網(wǎng)店第26天銷售額為792元.(3);(4),∴當(dāng)時,y最大=,答:這30天中第15天獲得的利潤最大,最大利潤是元【點睛】本題考查二次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是學(xué)會構(gòu)建函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考??碱}型.23、(1);(2);【分析】(1)屬于求簡單事件的概率,根據(jù)概率公式計算可得;(2)用列表格法列出所有的等可能結(jié)果,從中確定符合事件的結(jié)果,根據(jù)概率公式計算可得.【詳解】解:(1)小亮隨機報名一個項目共有4種等可能結(jié)果,分別為A.足球、B.機器人、C.航模、D.繪畫,其中選擇“機器人”的有1種,為B.機器人,所以選擇“機器人”的概率為P=.(2)用列表法表示所有可能出現(xiàn)的結(jié)果如圖:從表格可以看出,總共有16種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中至少有一人參加“航?!鄙鐖F有7種,分別為(A,C),(B,C),(C,A),(C,B),(C,C),(C,D),(D,C),所以兩人至少有一人參加“航?!鄙鐖F的概率P=.【點睛】本題考查的是求簡單事件的概率和兩步操作事件的概率,用表格或樹狀圖表示總結(jié)果數(shù)是解答此類問題的關(guān)鍵.24、(1)(2)();(3)或【分析】(1)過點作,垂足為點.,則.根據(jù)構(gòu)建方程求出即可解決問題.(2)①證明,可得,由此構(gòu)建關(guān)系式即可解決問題.②分兩種情形:當(dāng)時,當(dāng)時,分別求解即可解決問題.【詳解】解:(1)是等邊三角形,,.,,,,,,.過點作,垂足為點.設(shè),則.在中,,,,,在中,,,解得.所以線段的長是.(2)①設(shè),則,.,,,又,,,又,,,由(1)得在中,,,,.②當(dāng)時,,則有,整理得,解得或(舍棄),.當(dāng)時,同法可得當(dāng)時,,整理得,解得(舍棄)或1,.綜上所述:當(dāng)∠CAD<120°時,;當(dāng)120°<∠CAD<180°時,.【點睛】本題屬于三角形綜合題,考查了等邊三角形的性質(zhì),解直角三角形,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.25、(1)y=-x2+4x;(2)點C的坐標為(3,3),3;(3)點P的坐標為(2,4)或(3,3)【分析】(1)將點A、B的坐標代入即可求出解析式;(2)求出拋物線的對稱軸,根據(jù)對稱性得到點C的坐標,再利用面積公式即可得到三角形的面積;(3)先求出直線AB的解析式,過P點作PE∥y軸交AB于點E,設(shè)其坐標為P(a,-a2+4a),得到點E的坐標為(a,-a+4),求出線段PE,即可根據(jù)面積相加關(guān)系求出a,即可得到點P的坐標.【詳解】(1)把點A(4,0),B(1,3)代入拋物線y=ax2+bx中,得,得,∴拋物線的解析式為y=-x2+4x;(2)∵,∴對稱軸是直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論