云南省新平縣三中2024屆高三下學期開學考試數(shù)學試題理試題_第1頁
云南省新平縣三中2024屆高三下學期開學考試數(shù)學試題理試題_第2頁
云南省新平縣三中2024屆高三下學期開學考試數(shù)學試題理試題_第3頁
云南省新平縣三中2024屆高三下學期開學考試數(shù)學試題理試題_第4頁
云南省新平縣三中2024屆高三下學期開學考試數(shù)學試題理試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

云南省新平縣三中2024屆高三下學期開學考試數(shù)學試題理試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.2.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數(shù)超過102C.四個月的數(shù)據(jù)顯示北京市的居民消費價格指數(shù)增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢3.若,,則的值為()A. B. C. D.4.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.5.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.36.已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.7.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設,,則當時,的最大值是()A.8 B.9 C.10 D.118.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.9.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.210.已知復數(shù)在復平面內(nèi)對應的點的坐標為,則下列結論正確的是()A. B.復數(shù)的共軛復數(shù)是C. D.11.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.12.洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.14.如圖,在中,,,,點在邊上,且,將射線繞著逆時針方向旋轉,并在所得射線上取一點,使得,連接,則的面積為__________.15.已知函數(shù),則________;滿足的的取值范圍為________.16.的二項展開式中,含項的系數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講設函數(shù).(1)當時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.18.(12分)設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.19.(12分)在平面直角坐標系中,設,過點的直線與圓相切,且與拋物線相交于兩點.(1)當在區(qū)間上變動時,求中點的軌跡;(2)設拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.20.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68221.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.22.(10分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設為曲線上任意一點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數(shù)的解析式,結合的取值范圍求出的值,由此可得出函數(shù)的解析式.【題目詳解】由圖象可得,函數(shù)的最小正周期為,.將點代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【題目點撥】本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.2、D【解題分析】

采用逐一驗證法,根據(jù)圖表,可得結果.【題目詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D【題目點撥】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.3、A【解題分析】

取,得到,取,則,計算得到答案.【題目詳解】取,得到;取,則.故.故選:.【題目點撥】本題考查了二項式定理的應用,取和是解題的關鍵.4、A【解題分析】

根據(jù)等比數(shù)列的性質可得,通分化簡即可.【題目詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【題目點撥】本題考查了等比數(shù)列的性質,考查了推理能力與運算能力,屬于基礎題.5、B【解題分析】

過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【題目詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【題目點撥】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.6、A【解題分析】

根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【題目詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【題目點撥】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.7、B【解題分析】

根據(jù)題意計算,,,解不等式得到答案.【題目詳解】∵是以1為首項,2為公差的等差數(shù)列,∴.∵是以1為首項,2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【題目點撥】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學生對于數(shù)列公式方法的靈活運用.8、D【解題分析】

選取為基底,其他向量都用基底表示后進行運算.【題目詳解】由題意是的重心,,∴,,∴,故選:D.【題目點撥】本題考查向量的數(shù)量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.9、A【解題分析】

設,用表示出,求出的值即可得出答案.【題目詳解】設由,,.故選:A【題目點撥】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.10、D【解題分析】

首先求得,然后根據(jù)復數(shù)乘法運算、共軛復數(shù)、復數(shù)的模、復數(shù)除法運算對選項逐一分析,由此確定正確選項.【題目詳解】由題意知復數(shù),則,所以A選項不正確;復數(shù)的共軛復數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【題目點撥】本小題考查復數(shù)的幾何意義,共軛復數(shù),復數(shù)的模,復數(shù)的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想.11、A【解題分析】

根據(jù)偶函數(shù)的性質和單調性即可判斷.【題目詳解】解:對,,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,,所以故選:A【題目點撥】考查偶函數(shù)的性質以及單調性的應用,基礎題.12、A【解題分析】

基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【題目詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【題目點撥】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、{5}【解題分析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.14、【解題分析】

由余弦定理求得,再結合正弦定理得,進而得,得,則面積可求【題目詳解】由,得,解得.因為,所以,,所以.又因為,所以.因為,所以.故答案為【題目點撥】本題考查正弦定理、余弦定理的應用,考查運算求解能力,是中檔題15、【解題分析】

首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【題目詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【題目點撥】本題考查分段函數(shù)的性質的應用,分類討論思想,屬于基礎題.16、【解題分析】

寫出二項展開式的通項,然后取的指數(shù)為求得的值,則項的系數(shù)可求得.【題目詳解】,由,可得.含項的系數(shù)為.故答案為:【題目點撥】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】

(1)當時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調性求得的取值范圍.【題目詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當時,由函數(shù)單調性可得,解得;②當時,,所以符合題意;③當時,由函數(shù)單調性可得,,解得綜上,實數(shù)的取值范圍為【題目點撥】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.18、(1)2,;(2)證明見解析.【解題分析】

(1)由題意得的方程為,根據(jù)為拋物線過焦點的弦,以為直徑的圓與相切于點..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設,的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【題目詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設,的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,,故.【題目點撥】本題主要考查拋物線的定義幾何性質以及直線與拋物線的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.19、(1).(2)的周長為,時,的周長為【解題分析】

(1)設的方程為,根據(jù)題意由點到直線的距離公式可得,將直線方程與拋物線方程聯(lián)立可得,設?坐標分別是?,利用韋達定理以及中點坐標公式消參即可求解.(2)根據(jù)拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【題目詳解】(1)設的方程為于是聯(lián)立設?坐標分別是?則設的中點坐標為,則消去參數(shù)得:(2)設,,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為【題目點撥】本題考查了動點的軌跡方程、直線與拋物線的位置關系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.20、(1)(i)83.;(ii)272.(2)見解析.【解題分析】

(1)根據(jù)原始分數(shù)分布區(qū)間及轉換分區(qū)間,結合所給示例,即可求得小明轉換后的物理成績;根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項分布即可求得X【題目詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物理成績?yōu)?3分;(ii)因為物理考試原始分基本服從正態(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數(shù)為2000×0.136=272(人);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論