版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省紅河州云南市蒙自一中高三3月份模擬考試數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.2.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.3.劉徽是我國魏晉時期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.4.在中,,,,則邊上的高為()A. B.2 C. D.5.國務(wù)院發(fā)布《關(guān)于進一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構(gòu)統(tǒng)計了年至年國家財政性教育經(jīng)費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費的支出增長最多的年份是年6.已知集合,則集合()A. B. C. D.7.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.8.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)9.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.2510.在直角中,,,,若,則()A. B. C. D.11.若點是角的終邊上一點,則()A. B. C. D.12.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.14.展開式中的系數(shù)為_________.(用數(shù)字做答)15.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點,若點的坐標(biāo)為,則的取值范圍為__________.16.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,.求矩陣;求矩陣的特征值.18.(12分)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列{}的前項和為,求使成立的的最小值.19.(12分)2019年6月,國內(nèi)的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務(wù)用了不到20年的時間,完成了技術(shù)上的飛躍,躋身世界先進水平.為了解高校學(xué)生對的消費意愿,2019年8月,從某地在校大學(xué)生中隨機抽取了1000人進行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計升級到的時段人數(shù)早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級時間的早晚與大學(xué)生愿意為套餐支付更多的費用作比較,可得出下圖的關(guān)系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗用戶的).(1)從該地高校大學(xué)生中隨機抽取1人,估計該學(xué)生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學(xué)生都已簽約套餐,能否認為樣本中早期體驗用戶的人數(shù)有變化?說明理由.20.(12分)已知橢圓C的離心率為且經(jīng)過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.21.(12分)為了解本學(xué)期學(xué)生參加公益勞動的情況,某校從初高中學(xué)生中抽取100名學(xué)生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學(xué)生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;(3)當(dāng)時,高中生和初中生相比,那學(xué)段學(xué)生平均參加公益勞動時間較長.(直接寫出結(jié)果)22.(10分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【題目詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【題目點撥】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎(chǔ).2、B【解題分析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【題目詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【題目點撥】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.3、C【解題分析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【題目詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【題目點撥】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎(chǔ)題.4、C【解題分析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【題目詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【題目點撥】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.5、C【解題分析】
觀察圖表,判斷四個選項是否正確.【題目詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【題目點撥】本題考查統(tǒng)計圖表,正確認識圖表是解題基礎(chǔ).6、D【解題分析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【題目詳解】因,所以,故,又,,則,故集合.故選:D.【題目點撥】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎(chǔ)題.7、C【解題分析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【題目詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【題目點撥】本題主要考查了雙曲線的標(biāo)準方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.8、C【解題分析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項.【題目詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【題目點撥】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.9、C【解題分析】
通過二項式展開式的通項分析得到,即得解.【題目詳解】由已知得,故當(dāng)時,,于是有,則.故選:C【題目點撥】本題主要考查二項式展開式的通項和系數(shù)問題,意在考查學(xué)生對這些知識的理解掌握水平.10、C【解題分析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值.【題目詳解】在直角中,,,,,
,
若,則故選C.【題目點撥】本題考查向量的加減運算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.11、A【解題分析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【題目詳解】由題意,點是角的終邊上一點,根據(jù)三角函數(shù)的定義,可得,則,故選A.【題目點撥】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準確化簡、計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、D【解題分析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結(jié)余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】試題分析:由坐標(biāo)系可知考點:復(fù)數(shù)運算14、210【解題分析】
轉(zhuǎn)化,只有中含有,即得解.【題目詳解】只有中含有,其中的系數(shù)為故答案為:210【題目點撥】本題考查了二項式系數(shù)的求解,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.15、【解題分析】
由正弦定理可得點在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【題目詳解】解:由正弦定理得,則點在曲線上,設(shè),則,,又,,因為,則,即的取值范圍為.故答案為:.【題目點撥】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運算,考查學(xué)生計算能力,有一定的綜合性,但難度不大.16、【解題分析】
求出雙曲線的漸近線方程,右準線方程,得到交點坐標(biāo)代入拋物線方程求解即可.【題目詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【題目點撥】本題考查雙曲線的簡單性質(zhì)以及拋物線的簡單性質(zhì)的應(yīng)用,是基本知識的考查,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;,.【解題分析】
由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項式為,令,求出矩陣的特征值.【題目詳解】設(shè)矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項式為,令,解得,,即矩陣的兩個特征值為,.【題目點撥】本題考查矩陣的知識點,屬于??碱}.18、(1);(2)的最小值為19.【解題分析】
(1)根據(jù)條件列方程組求出首項、公差,即可寫出等差數(shù)列的通項公式;(2)根據(jù)等差數(shù)列前n項和化簡,利用裂項相消法求和,解不等式即可求解.【題目詳解】(1)等差數(shù)列的公差設(shè)為,,,可得,,解得,,則;(2),,前n項和為,即,可得,即,則的最小值為19.【題目點撥】本題主要考查了等差數(shù)列的通項公式,等差數(shù)列的前n項和,裂項相消法求和,屬于中檔題19、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化,詳見解析【解題分析】
(1)由從高校大學(xué)生中隨機抽取1人,該學(xué)生在2021年或2021年之前升級到,結(jié)合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應(yīng)的概率,得到隨機變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【題目詳解】(1)由題意可知,從高校大學(xué)生中隨機抽取1人,該學(xué)生在2021年或2021年之前升級到的概率估計為樣本中早期體驗用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗用戶中隨機抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認為早期體驗用戶人數(shù)增加.【題目點撥】本題主要考查了離散型隨機變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對于求離散型隨機變量概率分布列問題首先要清楚離散型隨機變量的可能取值,計算得出概率,列出離散型隨機變量概率分布列,最后按照數(shù)學(xué)期望公式計算出數(shù)學(xué)期望,其中列出離散型隨機變量概率分布列及計算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.20、(1)(2)【解題分析】
(1)根據(jù)橢圓的離心率、橢圓上點的坐標(biāo)以及列方程,由此求得,進而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點的坐標(biāo),將的坐標(biāo)代入橢圓方程,化簡后可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 19701.1-2024外科植入物超高分子量聚乙烯第1部分:粉料
- 浙江省紹興市2024-2025學(xué)年高二上學(xué)期12月月考語文試題及參考答案
- 《計算語言學(xué)概論》課件
- 體癬的臨床護理
- 《試乘試駕培訓(xùn)》課件
- 2021年連鎖包點行業(yè)巴比食品分析報告
- 皮膚松弛的臨床護理
- JJF(陜) 074-2021 應(yīng)變控制式直剪儀校準規(guī)范
- 《計數(shù)器和寄存器》課件
- 個人職業(yè)素養(yǎng)的提升方向計劃
- 1.2《友邦驚詫論》教學(xué)設(shè)計-【中職專用】高二語文同步講堂(高教版2024·拓展模塊上冊)
- 人教新目標(biāo)版英語八下Unit 6《An old man tried to move the mountains》(Period 1)說課稿
- 綠化管理的績效評估與標(biāo)準制定
- (完整版)數(shù)字電子技術(shù)基礎(chǔ)教案
- 裝飾公司與材料商合作協(xié)議范本
- 跨文化交際 Intercultural Communication智慧樹知到期末考試答案章節(jié)答案2024年內(nèi)蒙古民族大學(xué)
- 2024年一季度思想?yún)R報十篇
- 師德師風(fēng)建設(shè)有內(nèi)容
- MOOC 攝影藝術(shù)創(chuàng)作-中國傳媒大學(xué) 中國大學(xué)慕課答案
- 中國加速康復(fù)外科臨床實踐指南
- 傳送帶設(shè)備設(shè)計說明書
評論
0/150
提交評論