




2023滬教版-七年級數(shù)學下冊教學課件-【第2課時 不等式的性質】.ppt 免費下載
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第2課時不等式的性質滬科版·七年級下冊狀元成才路狀元成才路新課導入等式兩邊加上或減去同一個數(shù)(或式子),乘以或除以同一個數(shù)(除數(shù)不為0),結果仍然相等.你還記得等式的性質嗎?不等式也有這樣的性質嗎?狀元成才路狀元成才路新課探究觀察在一臺天平兩端的托盤中分別放置了質量為a,b
的物體,圖中天平傾斜,這直觀地說明a>b.狀元成才路狀元成才路這時,如果在兩端托盤中同時加上質量為c
的物體,天平的傾斜方向會改變嗎?這反映的數(shù)量關系是什么呢?圖中天平仍然傾斜,這地說明a+c>b+c.如果再把c
拿走呢?狀元成才路狀元成才路性質1不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.即
如果
a
>b,那么
a+c>b+c,a–c>b–c.狀元成才路狀元成才路用“>”或“<”填空,并說明是根據(jù)不等式的哪一條性質:(1)若x+3>6,則x____3,根據(jù)___________________;(2)若a
–2<3,則a____5,根據(jù)___________________.練習<不等式性質1不等式性質1<狀元成才路狀元成才路思考對于傾斜的天平,如果兩邊砝碼的質量同時擴大相同的倍數(shù)或同時縮小為原來的幾分之一,那么天平的傾斜方向會改變嗎?狀元成才路狀元成才路舉例驗證一下:8____58×2____5×2–5____–1(–5)×3____(–1)×38____48÷2____4÷2–10____–5(–10)÷3____(–5)÷3>><<>><<狀元成才路狀元成才路性質2不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.即
如果
a
>b,c
>0,那么
ac>bc,.acbc>狀元成才路狀元成才路練習設a>b,用“>”或“<”填空,并說明是根據(jù)不等式的哪一條性質:(1)4a____4b;根據(jù)______________;(2)3.5a+1____3.5b+1.根據(jù)__________________;>不等式性質2>不等式性質1和2狀元成才路狀元成才路探究1.如果a
>b,那么它們的相反數(shù)–a
與–b
哪個大,你能用數(shù)軸上點的位置關系和具體的例子加以說明嗎?ab0–b–a–a<
–b狀元成才路狀元成才路2.如果a
>b,那么–a<–b,這個式子可理解為:a×(–1)<
b×(–1)狀元成才路狀元成才路這樣對于不等式a
>b,兩邊同乘以–3,會得到什么結果呢?a×(–1)<
b×(–1)a
>b×(–1)a×(–3)<
b×(–3)×3×(–3)狀元成才路狀元成才路3.如果a
>b,c<0,那么ac
與bc
有怎樣的大小關系?a×(–1)<
b×(–1)a
>b×(–1)–ac>
–bc×c(c<0)×(–c)(–c>
0)狀元成才路狀元成才路性質3不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變.即
如果
a
>b,c
<0,那么
ac<bc,.acbc<狀元成才路狀元成才路性質4如果
a
>b,那么b<a.例如,由3>x,可得x
<3.不等式的對稱性.狀元成才路狀元成才路觀察如圖,設數(shù)軸上的三個點A,B,C分別表示三個實數(shù)a,b,c.從中你能發(fā)現(xiàn)不等式的什么性質?ab0cABCa>b,b>c,那么a
與c
呢?狀元成才路狀元成才路性質5如果
a
>b,b>c,那么a
>c.例如,由∠A>∠B,∠B>30°,可得∠A>30°.不等式的傳遞性.狀元成才路狀元成才路交流等式與不等式的基本性質有哪些相同點和不同點?不同點:不等式的兩邊都乘以(或除以)一個負數(shù),不等號的方向改變.等式的兩邊都乘以(或除以)同一個負數(shù),等式仍然成立.狀元成才路狀元成才路不等式的兩邊都乘以(或除以)同個正數(shù),不等號的方向不變.等式的兩邊都乘以(或除以)同個正數(shù),等式仍然成立.狀元成才路狀元成才路相同點:
不等式的兩邊同時加,上(或減去)同一個數(shù)或同一個整式,
不等號的方向不變.等式兩邊同時加上(或減去)同一個數(shù)或同一個整式等式仍然成立.
狀元成才路狀元成才路隨堂演練1.若m>n,下列不等式一定成立的是(
)A.m–2>n+2 B.2m>2nC.> D.m2>n2B狀元成才路狀元成才路(1)若b–3a<0,則b<3a;
(2)如果–5x>20,那么x>–4;(3)若a>b,則ac2>bc2;(4)若ac2>bc2,則a>b;(5)若a>b,則a(c2+1)>b(c2+1);(6)若a>b>0,則
<.√××√√√2.判斷下列各題的結論是否正確.狀元成才路狀元成才路3.根據(jù)不等式的性質,將下列不等式化成“x>a”或“x<a”的形式:(1)x–1<3;解:等式兩邊加上1,得(2)6x
<5x–2解:等式兩邊減去5x,得x
<–2x
<4狀元成才路狀元成才路(3)<5;x3解:等式兩邊乘以3,得x
<15(4)–4x
>3解:等式兩邊除以–4,得x
<
狀元成才路狀元成才路課堂小結性質1不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.即
如果
a
>b,那么
a+c>b+c,a–c>b–c.不等式的基本性質性質2不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.即
如果
a
>b,c
>0,那么
ac>bc,.acbc>狀元成才路狀元成才路性質3不等式的兩邊都乘以(或除以)同
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版一年級語文上冊開學第一課
- 玻璃幕墻工程承包合同
- 黃藍扁平風志愿者服務模板
- 領導力發(fā)展成為高效能領導者
- 革新理念開啟新紀元-新能源車技術變革的研究與應用展望
- 音樂產業(yè)中的數(shù)據(jù)挖掘與價值發(fā)現(xiàn)
- 顛覆傳統(tǒng)模式新零售技術推動商業(yè)體驗升級
- 顧客體驗為核心的零售營銷策略優(yōu)化
- 防災減災安全教育培訓
- 青少年傳統(tǒng)文化與藝術培訓的未來展望
- 2024年中國農業(yè)銀行深圳市分行招聘筆試真題
- 配電柜維護保養(yǎng)施工方案范文
- 2025年山東東營市事業(yè)單位上半年統(tǒng)考(7.26)歷年自考難、易點模擬試卷(共500題附帶答案詳解)
- 貿易安全意識培訓
- 管理學基礎-形考任務二-國開-參考資料
- 大數(shù)據(jù)分析在運維中的應用-第1篇-深度研究
- 投標標前協(xié)議書范本
- 2025年中國鱈魚行業(yè)市場全景評估及發(fā)展戰(zhàn)略規(guī)劃報告
- 交流激勵下的鋸齒環(huán)狀表面介質阻擋放電特性
- 全面指南:2024年醫(yī)學整形美容醫(yī)院員工手冊
- 2025年度食用菌產業(yè)園區(qū)公共設施運營管理合同3篇
評論
0/150
提交評論