




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖南省石門縣一中高三第三次教學(xué)質(zhì)量檢測(cè)試題考試數(shù)學(xué)試題理試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A. B. C. D.2.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.3.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.64.框圖與程序是解決數(shù)學(xué)問題的重要手段,實(shí)際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計(jì)算一組數(shù)據(jù)的方差,設(shè)計(jì)了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,5.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.6.的展開式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.807.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.9.一個(gè)頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計(jì)樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)共有()A. B. C. D.10.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.11.下列不等式成立的是()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,當(dāng)輸出的時(shí),則輸入的的值為()A.-2 B.-1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有編號(hào)分別為1,2,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),則取出球的編號(hào)互不相同的概率為_______________.14.若函數(shù)()的圖象與直線相切,則______.15.已知拋物線的焦點(diǎn)和橢圓的右焦點(diǎn)重合,直線過拋物線的焦點(diǎn)與拋物線交于、兩點(diǎn)和橢圓交于、兩點(diǎn),為拋物線準(zhǔn)線上一動(dòng)點(diǎn),滿足,,當(dāng)面積最大時(shí),直線的方程為______.16.已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若存在,使得不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.18.(12分)如圖在直角中,為直角,,,分別為,的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,連接,,為的中點(diǎn).(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.19.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時(shí),若,,求證:.20.(12分)已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.21.(12分)如圖所示,在四棱錐中,∥,,點(diǎn)分別為的中點(diǎn).(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.22.(10分)已知橢圓的左、右焦點(diǎn)分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點(diǎn),且過的直線與橢圓交于兩點(diǎn),設(shè)且.(1)求點(diǎn)的坐標(biāo);(2)求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【題目詳解】依題意,.故選:A【題目點(diǎn)撥】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.2、B【解題分析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【題目詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗?,所以,?dāng)時(shí),等號(hào)成立.所以.故選:B.【題目點(diǎn)撥】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.3、C【解題分析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【題目詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【題目點(diǎn)撥】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.4、A【解題分析】
依題意問題是,然后按直到型驗(yàn)證即可.【題目詳解】根據(jù)題意為了計(jì)算7個(gè)數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【題目點(diǎn)撥】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.5、D【解題分析】
可過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【題目詳解】如圖,過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【題目點(diǎn)撥】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.6、B【解題分析】
展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【題目詳解】由題意,展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開式中含的項(xiàng)的系數(shù)為.故選:B【題目點(diǎn)撥】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.7、B【解題分析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常常考慮用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過余弦定理建立關(guān)系.8、B【解題分析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【題目詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【題目點(diǎn)撥】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、B【解題分析】
計(jì)算出樣本在的數(shù)據(jù)個(gè)數(shù),再減去樣本在的數(shù)據(jù)個(gè)數(shù)即可得出結(jié)果.【題目詳解】由題意可知,樣本在的數(shù)據(jù)個(gè)數(shù)為,樣本在的數(shù)據(jù)個(gè)數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)為.故選:B.【題目點(diǎn)撥】本題考查利用頻數(shù)分布表計(jì)算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.10、A【解題分析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【題目詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐椋栽邳c(diǎn)處取得最大值,則,即.故選:A【題目點(diǎn)撥】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.11、D【解題分析】
根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【題目詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【題目點(diǎn)撥】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.12、B【解題分析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】試題分析:從編號(hào)分別為1,1,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),有種不同的結(jié)果,由于是隨機(jī)取出的,所以每個(gè)結(jié)果出現(xiàn)的可能性是相等的;設(shè)事件為“取出球的編號(hào)互不相同”,則事件包含了個(gè)基本事件,所以.考點(diǎn):1.計(jì)數(shù)原理;1.古典概型.14、2【解題分析】
設(shè)切點(diǎn)由已知可得,即可解得所求.【題目詳解】設(shè),因?yàn)?,所以,即,又?所以,即,.故答案為:.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.15、【解題分析】
根據(jù)均值不等式得到,,根據(jù)等號(hào)成立條件得到直線的傾斜角為,計(jì)算得到直線方程.【題目詳解】由橢圓,可知,,,,,,,(當(dāng)且僅當(dāng),等號(hào)成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【題目點(diǎn)撥】本題考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.16、【解題分析】
設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進(jìn)而可求得和的值,利用等比數(shù)列求和公式可求得的值.【題目詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項(xiàng)為,則,則,,,,,因此,.故答案為:.【題目點(diǎn)撥】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ).(Ⅱ).【解題分析】
(Ⅰ)時(shí),根據(jù)絕對(duì)值不等式的定義去掉絕對(duì)值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價(jià)于,求出在的最小值即可.【題目詳解】(Ⅰ)當(dāng)時(shí),時(shí),不等式化為,解得,即時(shí),不等式化為,不等式恒成立,即時(shí),不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對(duì)任意恒成立當(dāng)時(shí),取得最小值為實(shí)數(shù)的取值范圍是【題目點(diǎn)撥】本題考查了絕對(duì)值不等式的解法與應(yīng)用問題,也考查了函數(shù)絕對(duì)值三角不等式的應(yīng)用問題,屬于常規(guī)題型.18、(Ⅰ)詳見解析;(Ⅱ).【解題分析】
(Ⅰ)取中點(diǎn),連結(jié)、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點(diǎn),、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【題目詳解】證明:(Ⅰ)取中點(diǎn),連結(jié)、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點(diǎn),∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點(diǎn),、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,設(shè),則,,,,∴,,,設(shè)面的法向量,則,取,得,同理,得平面的法向量,設(shè)二面角的平面角為,則,∴二面角的余弦值為.【題目點(diǎn)撥】本題考查面面垂直及線面垂直性質(zhì)定理、線面垂直判定與性質(zhì)定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.19、(1)證明見解析;(2)證明見解析.【解題分析】
(1)首先對(duì)函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【題目詳解】(1),令,則,令得,當(dāng)時(shí),則在單調(diào)遞減,當(dāng)時(shí),則在單調(diào)遞增,所以,當(dāng)時(shí),,即,則在上單調(diào)遞增,當(dāng)時(shí),,易知當(dāng)時(shí),,當(dāng)時(shí),,由零點(diǎn)存在性定理知,,不妨設(shè),使得,當(dāng)時(shí),,即,當(dāng)時(shí),,即,當(dāng)時(shí),,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時(shí)等號(hào)成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時(shí),在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時(shí),有,故成立,從而得證.【題目點(diǎn)撥】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.20、(1)證明見解析;(2)【解題分析】
(1)連接交于點(diǎn),連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,分別表示出對(duì)應(yīng)的點(diǎn)坐標(biāo),設(shè)平面的一個(gè)法向量為,結(jié)合直線對(duì)應(yīng)的和法向量,利用向量夾角的余弦公式進(jìn)行求解即可【題目詳解】證明:如圖,連接交于點(diǎn),連接,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,由,取,得.設(shè)直線與平面所成角為,則.直線與平面所成角的正弦值為.【題目點(diǎn)撥】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 了解寵物殯葬師試題及答案的重點(diǎn)
- 小白鼠企業(yè)門戶網(wǎng)站系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
- 2024年份十一月份光子晶體EPC總承包合同帶隙穩(wěn)定性條款
- 二零二四年份二月辦公室文員合同增補(bǔ)智能清潔機(jī)器人條款
- 2024人力資源管理師成功者經(jīng)驗(yàn)試題及答案
- 黑龍江民族職業(yè)學(xué)院《馬克思基本原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 黑龍江省伊春市美溪區(qū)2025年三下數(shù)學(xué)期末聯(lián)考試題含解析
- 黑龍江省大慶市鐵人中學(xué)2025年高三第二學(xué)期年級(jí)質(zhì)量調(diào)研考試物理試題試卷含解析
- 黑龍江省牡東部地區(qū)四校聯(lián)考2025年高三物理試題第二次模擬考試試題含解析
- 黑龍江省雞西市密山市2025屆數(shù)學(xué)四下期末達(dá)標(biāo)檢測(cè)模擬試題含解析
- 《防范于心反詐于行》中小學(xué)防范電信網(wǎng)絡(luò)詐騙知識(shí)宣傳課件
- 大象版小學(xué)科學(xué)新版四年級(jí)上冊(cè)科學(xué)實(shí)驗(yàn)記錄單
- 2021版十八項(xiàng)醫(yī)療質(zhì)量安全核心制度附流程圖
- 神經(jīng)內(nèi)科護(hù)理教學(xué)查房護(hù)理病歷臨床病案
- TCASME 1525-2024 工業(yè)用甲縮醛
- 《證券投資學(xué)》全套教學(xué)課件
- 2輸變電工程施工質(zhì)量驗(yàn)收統(tǒng)一表式(變電工程土建專業(yè))-2024年版
- 2024年浙江省中考?xì)v史真題(解析版)
- 洗地機(jī)產(chǎn)品營(yíng)銷計(jì)劃書
- 火麻種子生產(chǎn)技術(shù)規(guī)程
- 新人教版生物八年級(jí)下冊(cè)教學(xué)計(jì)劃及進(jìn)度表
評(píng)論
0/150
提交評(píng)論