版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年江蘇省江陰市長壽中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.已知拋物線y=﹣x2+4x+3,則該拋物線的頂點坐標(biāo)為()A.(﹣2,7) B.(2,7) C.(2,﹣9) D.(﹣2,﹣9)2.如圖,在中,點D,E分別為AB,AC邊上的點,且,CD、BE相較于點O,連接AO并延長交DE于點G,交BC邊于點F,則下列結(jié)論中一定正確的是A. B. C. D.3.如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為-3和1;④a-2b+c≥0,其中正確的命題是()A.①②③ B.①④ C.①③ D.①③④4.如圖,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分別為M,N,若MN=,那么BC等于()A.5 B. C.2 D.5.小兵身高1.4m,他的影長是2.1m,若此時學(xué)校旗桿的影長是12m,那么旗桿的高度()A.4.5m B.6m C.7.2m D.8m6.下列數(shù)學(xué)符號中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7.已知一扇形的圓心角為,半徑為,則以此扇形為側(cè)面的圓錐的底面圓的周長為()A. B. C. D.8.關(guān)于拋物線的說法中,正確的是()A.開口向下 B.與軸的交點在軸的下方C.與軸沒有交點 D.隨的增大而減小9.如圖,是的直徑,是的弦,已知,則的度數(shù)為()A. B. C. D.10.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦危枰砑拥臈l件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD二、填空題(每小題3分,共24分)11.已知點A(a,2019)與點A′(﹣2020,b)是關(guān)于原點O的對稱點,則a+b的值為_____.12.用長的鐵絲做一個長方形框架,設(shè)長方形的長為,面積為,則關(guān)于的函數(shù)關(guān)系式為__________.13.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.14.若點,是拋物線上的兩個點,則此拋物線的對稱軸是___.15.已知正方形ABCD邊長為4,點P為其所在平面內(nèi)一點,PD=,∠BPD=90°,則點A到BP的距離等于_____.16.某企業(yè)2017年全年收入720萬元,2019年全年收入845萬元,若設(shè)該企業(yè)全年收入的年平均增長率為x,則可列方程____.17.如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,在飛行過程中,當(dāng)小球的行高度為15m時,則飛行時間是_____.18.如果兩個相似三角形的對應(yīng)邊的比是4:5,那么這兩個三角形的面積比是_____.三、解答題(共66分)19.(10分)如圖l,在中,,,于點,是線段上的點(與,不重合),,,連結(jié),,,.(1)求證:;(2)如圖2,若將繞點旋轉(zhuǎn),使邊在的內(nèi)部,延長交于點,交于點.①求證:;②當(dāng)為等腰直角三角形,且時,請求出的值.20.(6分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C,若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);(3)當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.21.(6分)如圖,已知二次函數(shù)的頂點為(2,),且圖象經(jīng)過A(0,3),圖象與x軸交于B、C兩點.(1)求該函數(shù)的解析式;(2)連結(jié)AB、AC,求△ABC面積.22.(8分)已知y是x的反比例函數(shù),并且當(dāng)x=2時,y=6.(1)求y關(guān)于x的函數(shù)解析式;(2)當(dāng)x=時,y=______.23.(8分)解下列方程(1);(2).24.(8分)如圖,在Rt△ABC中,∠C=90°,矩形DEFG的頂點G、F分別在邊AC、BC上,D、E在邊AB上.(1)求證:△ADG∽△FEB;(2)若AD=2GD,則△ADG面積與△BEF面積的比為.25.(10分)我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在△ABC中,AB>AC,點D,E分別在AB,AC上,設(shè)CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.26.(10分)如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).(1)當(dāng)PE⊥AB,PF⊥BC時,如圖1,則的值為;(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當(dāng)60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】將題目中的函數(shù)解析式化為頂點式,即可寫出該拋物線的頂點坐標(biāo).【詳解】∵拋物線y=﹣x2+4x+3=﹣(x﹣2)2+7,∴該拋物線的頂點坐標(biāo)是(2,7),故選:B.【點睛】本題考查二次函數(shù)的頂點式,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.2、C【分析】由可得到∽,依據(jù)平行線分線段成比例定理和相似三角形的性質(zhì)進(jìn)行判斷即可.【詳解】解:A.∵,∴,故不正確;B.∵,∴,故不正確;C.∵,∴∽,∽,,.,故正確;D.∵,∴,故不正確;故選C.【點睛】本題主要考查的是相似三角形的判定和性質(zhì),熟練掌握相似三角形的性質(zhì)和判定定理是解題的關(guān)鍵.3、C【分析】根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對稱軸為x=-1,且過點(1,0),根據(jù)對稱軸可得拋物線與x軸的另一個交點為(-3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=-1,可對②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關(guān)系,可對③做出判斷;根據(jù)a、c的符號,以及對稱軸可對④做出判斷;最后綜合得出答案.【詳解】解:由圖象可知:拋物線開口向上,對稱軸為直線x=-1,過(1,0)點,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;對稱軸為直線x=-1,即:整理得,b=2a,因此②不正確;由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(-3,0),因此方程ax2+bx+c=0的兩根分別為-3和1;故③是正確的;
由a>0,b>0,c<0,且b=2a,則a-2b+c=a-4a+c=-3a+c<0,因此④不正確;
故選:C.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,能夠根據(jù)開口判斷a的符號,根據(jù)與x軸,y軸的交點判斷c的值以及b用a表示出的代數(shù)式是解題的關(guān)鍵.4、C【解析】先根據(jù)垂徑定理得出M、N分別是AB與AC的中點,故MN是△ABC的中位線,由三角形的中位線定理即可得出結(jié)論.【詳解】解:∵OM⊥AB,ON⊥AC,垂足分別為M、N,∴M、N分別是AB與AC的中點,∴MN是△ABC的中位線,∴BC=2MN=2,故選:C.【點睛】本題考查垂徑定理、三角形中位線定理;熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.5、D【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】根據(jù)相同時刻的物高與影長成比例,設(shè)旗桿的高度為xm,根據(jù)題意得:,解得:x=8,即旗桿的高度為8m,故選:D.【點睛】本題主要考查了相似三角形的應(yīng)用,同一時刻物高和影長成正比,考查利用所學(xué)知識解決實際問題的能力.6、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的定義即可判斷.【詳解】A既不是軸對稱圖形也不是中心對稱圖形;B是中心對稱圖形,但不是軸對稱圖形;C是軸對稱圖形,但不是中心對稱圖形;D既是軸對稱圖形,又是中心對稱圖形,故選D.【點睛】此題主要考察軸對稱圖形與中心對稱圖形的定義,熟知其定義是解題的關(guān)鍵.7、A【分析】利用弧長公式計算出扇形的弧長,以此扇形為側(cè)面的圓錐的底面圓的周長即是扇形的弧長.【詳解】解:扇形的弧長=,以此扇形為側(cè)面的圓錐的底面圓的周長為.故選:A.【點睛】本題考查了弧長的計算:.8、C【分析】根據(jù)題意利用二次函數(shù)的性質(zhì),對選項逐一判斷后即可得到答案.【詳解】解:A.,開口向上,此選項錯誤;B.與軸的交點為(0,21),在軸的上方,此選項錯誤;C.與軸沒有交點,此選項正確;D.開口向上,對稱軸為x=6,時隨的增大而減小,此選項錯誤.故選:C.【點睛】本題考查二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,熟練掌握并利用二次函數(shù)的性質(zhì)解答.9、C【分析】根據(jù)圓周角定理即可解決問題.【詳解】∵,∴.故選:C.【點睛】本題考查圓周角定理,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.10、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,
∵四邊形ABCD的對角線互相平分,
∴四邊形ABCD是平行四邊形,
∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,
∴四邊形ABCD是矩形,
故選D.【點睛】考查了矩形的判定,關(guān)鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.二、填空題(每小題3分,共24分)11、1.【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出a,b的值,進(jìn)而得出答案.【詳解】解:∵點A(a,2019)與點A′(﹣2020,b)是關(guān)于原點O的對稱點,∴a=2020,b=﹣2019,∴a+b=1.故答案為:1.【點睛】此題主要考查了關(guān)于原點對稱的點的性質(zhì),正確記憶橫縱坐標(biāo)的符號是解題關(guān)鍵.12、或【分析】易得矩形另一邊長為周長的一半減去已知邊長,那么矩形的面積等于相鄰兩邊長的積.【詳解】由題意得:矩形的另一邊長=24÷2?x=12?x,則y=x(12?x)=?x2+12x.故答案為或【點睛】本題考查了二次函數(shù)的應(yīng)用,掌握矩形周長與面積的關(guān)系是解題的關(guān)鍵.13、1【分析】根據(jù)函數(shù)值相等兩點關(guān)于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關(guān)于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為1.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,利用函數(shù)值相等兩點關(guān)于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關(guān)鍵.14、x=3【分析】根據(jù)拋物線的對稱性即可確定拋物線對稱軸.【詳解】解:點,是拋物線上的兩個點,且縱坐標(biāo)相等.根據(jù)拋物線的對稱性知道拋物線對稱軸是直線.故答案為:.【點睛】本題考察了二次函數(shù)的圖像和性質(zhì),對于二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),拋物線上兩個不同點P1(x1,y1),P2(x2,y2),若有y1=y2,則P1,P2兩點是關(guān)于拋物線對稱軸對稱的點,且這時拋物線的對稱軸是直線:.15、或【分析】由題意可得點P在以D為圓心,為半徑的圓上,同時點P也在以BD為直徑的圓上,即點P是兩圓的交點,分兩種情況討論,由勾股定理可求BP,AH的長,即可求點A到BP的距離.【詳解】∵點P滿足PD=,∴點P在以D為圓心,為半徑的圓上,∵∠BPD=90°,∴點P在以BD為直徑的圓上,∴如圖,點P是兩圓的交點,若點P在AD上方,連接AP,過點A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=4,∵∠BPD=90°,∴BP==3,∵∠BPD=90°=∠BAD,∴點A,點B,點D,點P四點共圓,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3﹣AH)2,∴AH=(不合題意),或AH=,若點P在CD的右側(cè),同理可得AH=,綜上所述:AH=或.【點睛】本題是正方形與圓的綜合題,正確確定點P是以D為圓心,為半徑的圓和以BD為直徑的圓的交點是解決問題的關(guān)鍵.16、720(1+x)2=1.【分析】增長率問題,一般用增長后的量=增長前的量×(1+增長率),參照本題,如果該企業(yè)全年收入的年平均增長率為x,根據(jù)2017年全年收入720萬元,2019年全年收入1萬元,即可得出方程.【詳解】解:設(shè)該企業(yè)全年收入的年平均增長率為x,則2018的全年收入為:720×(1+x)2019的全年收入為:720×(1+x)2.那么可得方程:720(1+x)2=1.故答案為:720(1+x)2=1.【點睛】本題考查了一元二次方程的運用,解此類題的關(guān)鍵是掌握等量關(guān)系式:增長后的量=增長前的量×(1+增長率).17、1s或3s【解析】根據(jù)題意可以得到15=﹣5x2+20x,然后求出x的值,即可解答本題.【詳解】∵y=﹣5x2+20x,∴當(dāng)y=15時,15=﹣5x2+20x,得x1=1,x2=3,故答案為1s或3s.【點睛】本題考查二次函數(shù)的應(yīng)用、一元二次方程的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和一元二次方程的知識解答.18、16:25【分析】根據(jù)相似三角形的面積的比等于相似比的平方,據(jù)此即可求解.【詳解】解:∵兩個相似三角形的相似比為:,∴這兩個三角形的面積比;故答案為:∶.【點睛】本題考查了相似三角形性質(zhì),解題的關(guān)鍵是熟記相似三角形的性質(zhì).(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.三、解答題(共66分)19、(1)見解析;(2)①見解析;②【分析】(1)通過證明△EAB≌△FAB,即可得到BE=BF;
(2)①首先證明△AEB≌△AFC,由相似三角形的性質(zhì)可得:∠EBA=∠FCA,進(jìn)而可證明△AGC∽△KGB;②根據(jù)題意,可分類討論求值即可.【詳解】(1)∵AB=AC,AO⊥BC,
∴∠OAC=∠OAB=45°,
∴∠EAB=∠EAF-∠BAF=45°,
∴∠EAB=∠BAF=45°,
在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),
∴BE=BF;
(2)①∵∠BAC=90°,∠EAF=90°,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),
∴∠EBA=∠FCA,
又∵∠KGB=∠AGC,
∴△AGC∽△KGB;
②當(dāng)∠EBF=90°時,∵EF=BF,
∴∠FEB=∠EBF=90°(不符合題意),當(dāng)∠BEF=90°,且EF=BF時,∴∠FEB=∠EBF=90°(不符合題意),當(dāng)∠EFB=90°,且EF=BF時,如下圖,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨設(shè),則BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,綜上,.【點睛】本題考查了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì),題目的綜合性很強,最后一問要注意分類討論,以防遺漏.20、(1)y=﹣x2+2x+3(2)(,)(3)當(dāng)點P的坐標(biāo)為(,)時,四邊形ACPB的最大面積值為【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點坐標(biāo);(3)根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.【詳解】(1)將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點P的縱坐標(biāo),當(dāng)時,即解得(不合題意,舍),∴點P的坐標(biāo)為(3)如圖2,P在拋物線上,設(shè)P(m,﹣m2+2m+3),設(shè)直線BC的解析式為y=kx+b,將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設(shè)點Q的坐標(biāo)為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當(dāng)y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當(dāng)m=時,四邊形ABPC的面積最大.當(dāng)m=時,,即P點的坐標(biāo)為當(dāng)點P的坐標(biāo)為時,四邊形ACPB的最大面積值為.【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用菱形的性質(zhì)得出P點的縱坐標(biāo),又利用了自變量與函數(shù)值的對應(yīng)關(guān)系;解(3)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì).21、(1);(2).【分析】(1)設(shè)該二次函數(shù)的解析式為,因為頂點(2,-1),可以求出h,k,將A(0,3)代入可以求出a,即可得出二次函數(shù)解析式.(2)由(1)求出函數(shù)解析式,令y等于0可以求出函數(shù)圖像與x軸的兩個交點為B,C兩點,然后利用面積公式,即可求出三角形ABC的面積.【詳解】(1)設(shè)該二次函數(shù)的解析式為∵頂點為(2,)∴又∵圖象經(jīng)過A(0,3)∴即∴該拋物線的解析式為(2)當(dāng)時,,解得,∴C(3,0)B(1,0)得∴.【點睛】熟練掌握待定系數(shù)法求二次函數(shù)解析式和三角形的面積公式是本題的解題關(guān)鍵.22、(1);(2)-8【分析】(1)設(shè),將x=2,y=1代入求解即可;(2)將x=代入反比例函數(shù)解析式求出y值.【詳解】解:(1)設(shè)∵當(dāng)x=2時,y=1.∴.∴.∴(2)將x=代入得:所以.【點睛】本題考查了反比例函數(shù)的解析式,熟練掌握求反比例函數(shù)解析式的方法是解題關(guān)鍵.23、(1),;(2),.【分析】(1)利用因式分解法解方程;(2)先變形為(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【詳解】(1),或,所以,;(2),,或,所以,.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進(jìn)行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學(xué)轉(zhuǎn)化思想).24、(1)證明見解析;(2)4.【分析】(1)易證∠AGD=∠B,根據(jù)∠ADG=∠BEF=90°,即可證明△ADG∽△FEB;(2)相似三角形的性質(zhì)解答即可.【詳解】(1)證明:∵∠C=90°,
∴∠A+∠B=90°,
∵四邊形DEFG是矩形,
∴∠GDE=∠FED=90°,
∴∠GDA+∠FEB=90°,
∴∠A+∠AGD=90°,
∴∠B=∠AGD,
且∠GDA=∠FEB=90°,
∴△ADG∽△FEB.(2)解:∵△ADG∽△FEB,
∴,∵AD=2GD,∴,∴.【點睛】本題考查了相似三角形的判定與性質(zhì),求證△ADG∽△FEB是解題的關(guān)鍵.25、存在等對邊四邊形,是四邊形DBCE,見解析【分析】作CG⊥BE于G點,作BF⊥CD交CD延長線于F點,證明△BCF≌△CBG,得到BF=CG,再證∠BDF=∠BEC,得到△BDF≌△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國透明聚丙烯行業(yè)深度調(diào)查及投資風(fēng)險研究報告
- 2024-2030年中國軟裝行業(yè)市場容量預(yù)測及發(fā)展策略研究報告
- 2024-2030年中國車鏡行業(yè)供需狀況發(fā)展戰(zhàn)略規(guī)劃分析報告
- 2024-2030年中國裝訂及其他印刷服務(wù)業(yè)市場發(fā)展前景調(diào)研與投資策略分析報告
- 2024年非特種勞防用品項目可行性研究報告
- 2024年變徑硅膠管項目可行性研究報告
- 2024至2030年滌棉兒童服裝項目投資價值分析報告
- 2024至2030年中絲熱處理爐項目投資價值分析報告
- 2024年標(biāo)準(zhǔn)車輛運輸承包合同范本版B版
- 2024平面模特職業(yè)發(fā)展聘用合同-時尚界精英協(xié)議3篇
- [重慶]金佛山景區(qū)蘭花村深度旅游策劃方案
- 數(shù)學(xué)建模案例分析--線性代數(shù)建模案例(20例)
- 市場營銷之4P策略(課堂PPT)
- 中藥材生產(chǎn)管理質(zhì)量管理文件目錄
- 框架柱+剪力墻工程施工鋼筋綁扎安裝施工過程
- 蘇州預(yù)防性試驗、交接試驗費用標(biāo)準(zhǔn)
- 最新【SD高達(dá)G世紀(jì)-超越世界】各強力機體開發(fā)路線
- 泡沫混凝土安全技術(shù)交底
- 完整MAM-KY02S螺桿空壓機控制器MODBUSⅡ通信協(xié)議說明
- 《納米材料工程》教學(xué)大綱要點
- 長春市勞動合同樣本(共10頁)
評論
0/150
提交評論