版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省贛州市會昌縣2024屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等比數(shù)列中,,,則數(shù)列的前六項和為()A.63 B.-63 C.-31 D.312.在△ABC中,D是邊BC的中點,則=A. B. C. D.3.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.4.設(shè)函數(shù),,其中,.若,且的最小正周期大于,則()A., B.,C., D.,5.從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,則互斥而不對立的兩個事件是()A.恰有1個黑球與恰有2個黑球 B.至少有一個紅球與都是黑球C.至少有一個黑球與至少有1個紅球 D.至少有一個黑球與都是黑球6.設(shè),滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.3 B. C.1 D.7.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形8.下列函數(shù)的最小值為的是()A. B.C. D.9.?dāng)?shù)列的首項為,為等差數(shù)列,且(),若,,則()A. B. C. D.10.設(shè)數(shù)列是公差不為零的等差數(shù)列,它的前項和為,且、、成等比數(shù)列,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓錐的頂點為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側(cè)面積為__________.12.已知三棱柱的側(cè)棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于.13.在中,,,,則的面積等于______.14.已知扇形的圓心角為,半徑為,則扇形的面積.15.已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=_______16.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知以點為圓心的圓與直線相切.過點的動直線與圓A相交于M,N兩點,Q是的中點,直線與相交于點P.(1)求圓A的方程;(2)當(dāng)時,求直線的方程.18.等差數(shù)列的首項為23,公差為整數(shù),且第6項為正數(shù),從第7項起為負(fù)數(shù).求此數(shù)列的公差及前項和.19.已知,,與的夾角是(1)計算:①,②;(2)當(dāng)為何值時,與垂直?20.設(shè)函數(shù).(1)求函數(shù)的最小正周期.(2)求函數(shù)的單調(diào)遞減區(qū)間;(3)設(shè)為的三個內(nèi)角,若,,且為銳角,求.21.已知的角、、所對的邊分別是、、,設(shè)向量,,.(1)若,求證:為等腰三角形;(2)若,邊長,角,求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
利用等比數(shù)列通項公式求出公式,由此能求出數(shù)列的前六項和.【題目詳解】在等比數(shù)列中,,,解得數(shù)列的前六項和為:.故選:【題目點撥】本題考查等比數(shù)列通項公式求解基本量,屬于基礎(chǔ)題.2、C【解題分析】分析:利用平面向量的減法法則及共線向量的性質(zhì)求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質(zhì),平面向量的減法法則,屬于簡單題.3、A【解題分析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【題目詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【題目點撥】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.4、B【解題分析】
根據(jù)周期以及最值點和平衡位置點先分析的值,然后帶入最值點計算的值.【題目詳解】因為,,所以,則,所以,即,故;則,代入可得:且,所以.故選B.【題目點撥】(1)三角函數(shù)圖象上,最值點和平衡位置的點之間相差奇數(shù)個四分之一周期的長度;(2)計算的值時,注意選用最值點或者非特殊位置點,不要選用平衡位置點(容易多解).5、A【解題分析】
從裝有2個紅球和2個黑球的口袋中任取2個球,包括3種情況:①恰有一個黑球,②恰有兩個黑球,③沒有黑球.
故恰有一個黑球與恰有兩個黑球不可能同時發(fā)生,它們是互斥事件,再由這兩件事的和不是必然事件,故他們是互斥但不對立的事件,
故選:A.6、C【解題分析】
作出不等式組對應(yīng)的平面區(qū)域,結(jié)合圖形找出最優(yōu)解,從而求出目標(biāo)函數(shù)的最大值.【題目詳解】作出不等式組對應(yīng)的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當(dāng)直線經(jīng)過點時,最大.,解得,即,所以的最大值為1.故答案為選C【題目點撥】本題給出二元一次不等式組,求目標(biāo)函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃,也考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.7、D【解題分析】
用正弦定理化邊為角,再由誘導(dǎo)公式和兩角和的正弦公式化簡變形可得.【題目詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【題目點撥】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導(dǎo)公式的應(yīng)用.8、C【解題分析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點睛:本題考查基本不等式,考查通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法.9、B【解題分析】由題意可設(shè)等差數(shù)列的首項為,公差為,所以所以,所以,即=2n-8,=,所以,選B.10、A【解題分析】
設(shè)等差數(shù)列的公差為,根據(jù)得出與的等量關(guān)系,即可計算出的值.【題目詳解】設(shè)等差數(shù)列的公差為,由于、、成等比數(shù)列,則有,所以,,化簡得,因此,.故選:A.【題目點撥】本題考查等差數(shù)列前項和中基本量的計算,解題的關(guān)鍵就是結(jié)合題意得出首項與公差的等量關(guān)系,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
分析:先根據(jù)三角形面積公式求出母線長,再根據(jù)母線與底面所成角得底面半徑,最后根據(jù)圓錐側(cè)面積公式求結(jié)果.詳解:因為母線,所成角的余弦值為,所以母線,所成角的正弦值為,因為的面積為,設(shè)母線長為所以,因為與圓錐底面所成角為45°,所以底面半徑為因此圓錐的側(cè)面積為12、【解題分析】試題分析:由題意得,不妨設(shè)棱長為,如圖,在底面內(nèi)的射影為的中心,故,由勾股定理得,過作平面,則為與底面所成角,且,作于中點,所以,所以,所以與底面所成角的正弦值為.考點:直線與平面所成的角.13、【解題分析】
先用余弦定理求得,從而得到,再利用正弦定理三角形面積公式求解.【題目詳解】因為在中,,,由余弦定理得,所以由正弦定理得故答案為:【題目點撥】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.14、【解題分析】試題分析:由題可知,;考點:扇形面積公式15、-1【解題分析】
分n為偶數(shù)和奇數(shù)求得數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,然后利用分組求和得答案.【題目詳解】若n為偶數(shù),則an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶數(shù)項為首項為a2=﹣5,公差為﹣4的等差數(shù)列;若n為奇數(shù),則an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇數(shù)項為首項為a1=3,公差為4的等差數(shù)列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案為:1.【題目點撥】本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列前n項和的求法,是中檔題.16、【解題分析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運算,可得,再利用基本不等式,求得的最大值.【題目詳解】向量,,若向量,共線,則,,即,當(dāng)且僅當(dāng),時,取等號.故的最大值為,故答案為:.【題目點撥】本題主要考查兩個向量共線的性質(zhì),考查兩個向量坐標(biāo)形式的運算和基本不等式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)或【解題分析】
(1)圓心到切線的距離等于圓的半徑,從而易得圓標(biāo)準(zhǔn)方程;(2)考慮直線斜率不存在時是否符合題意,在斜率存在時,設(shè)直線方程為,根據(jù)垂徑定理由弦長得出圓心到直線的距離,現(xiàn)由點(圓心)到直線的距離公式可求得.【題目詳解】(1)由于圓A與直線相切,∴,∴圓A的方程為.(2)①當(dāng)直線與x軸垂直時,易知與題意相符,使.②當(dāng)直線與x軸不垂直時,設(shè)直線的方程為即,連接,則,∵,∴,由,得.∴直線,故直線的方程為或.【題目點撥】本題考查直線與圓的位置關(guān)系,解題關(guān)鍵是垂徑定理的應(yīng)用,在圓中與弦長有關(guān)的問題通常都是用垂徑定理解決.18、,【解題分析】
先設(shè)等差數(shù)列的公差為,根據(jù)第6項為正數(shù),從第7項起為負(fù)數(shù),得到求,再利用等差數(shù)列前項和公式求其.【題目詳解】設(shè)等差數(shù)列的公差為,因為第6項為正數(shù),從第7項起為負(fù)數(shù),所以,即,所以又因為所以所以【題目點撥】本題主要考查了等差數(shù)列的通項公式和前n項和公式,還考查了運算求解的能力,屬于中檔題.19、(1)①;②;(2).【解題分析】
利用數(shù)量積的定義求解出的值;(1)將所求模長平方,從而得到關(guān)于模長和數(shù)量積的式子,代入求得模長的平方,再開平方得到結(jié)果;(2)向量互相垂直得到數(shù)量積等于零,由此建立方程,解方程求得結(jié)果.【題目詳解】由已知得:(1)①②(2)若與垂直,則即:,解得:【題目點撥】本題考查利用數(shù)量積求解向量的模長、利用數(shù)量積與向量垂直的關(guān)系求解參數(shù)的問題.求解向量的模長關(guān)鍵是能夠通過平方運算將問題轉(zhuǎn)化為模長和數(shù)量積運算的形式,從而使問題得以求解.20、(1)(2)減區(qū)間為,(3)【解題分析】
利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論.利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)遞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城市配送服務(wù)聘用臨時司機(jī)合同樣本3篇
- 2025年度農(nóng)業(yè)市場調(diào)研聘用合同
- 2025至2030年中國聚合物迎水面防水膠數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國滑雪杖數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年干紅酒項目投資價值分析報告
- 2025至2030年吸音板項目投資價值分析報告
- 2025至2030年全套塑料軟包裝設(shè)備項目投資價值分析報告
- 2025至2030年EVA托碼項目投資價值分析報告
- 2025年香腸調(diào)料項目可行性研究報告
- 2025年鈦蒸汽換熱器項目可行性研究報告
- 各行業(yè)智能客服占比分析報告
- 年產(chǎn)30萬噸高鈦渣生產(chǎn)線技改擴(kuò)建項目環(huán)評報告公示
- 民謠酒吧項目創(chuàng)業(yè)計劃書
- 2023年珠海市招考合同制職員筆試參考題庫(共500題)答案詳解版
- 心電監(jiān)護(hù)考核標(biāo)準(zhǔn)
- 特種行業(yè)許可證申請表
- 古典芭蕾:基本技巧和術(shù)語
- 內(nèi)地居民前往香港或者澳門定居申請表
- DB43-T 2612-2023林下竹蓀栽培技術(shù)規(guī)程
- 三下《動物的一生》教材解讀
- 神木市孫家岔鎮(zhèn)神能乾安煤礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
評論
0/150
提交評論