版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省龍巖市一級達標學(xué)校2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點、、在圓上運動,且,若點的坐標為,的最大值為()A. B. C. D.2.以橢圓的兩個焦點為直徑的端點的圓與橢圓交于四個不同的點,順次連接這四個點和兩個焦點恰好組成一個正六邊形,那么這個橢圓的離心率為()A. B. C. D.3.已知向量、的夾角為,,,則()A. B. C. D.4.函數(shù)的圖象向右平移個單位后,得到函數(shù)的圖象,若為偶函數(shù),則的值為()A. B. C. D.5.在中,,,成等差數(shù)列,,則的形狀為()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等邊三角形6.在中,且,則等于()A. B. C. D.7.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.118.設(shè)等比數(shù)列的公比,前n項和為,則()A.2 B.4 C. D.9.過點的直線的斜率為,則等于()A. B.10 C.2 D.410.設(shè)不等式組所表示的平面區(qū)域為,在內(nèi)任取一點,的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中,,,,則________.12.已知向量,則________13.已知向量,則___________.14.實數(shù)2和8的等比中項是__________.15.已知當(dāng)時,函數(shù)(且)取得最小值,則時,的值為__________.16.公比為的無窮等比數(shù)列滿足:,,則實數(shù)的取值范圍為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的前項和為,,,且.(1)求的通項公式;(2)是否存在正整數(shù),使得成立?若存在,求出的最小值;若不存在,請說明理由.18.已知,.(Ⅰ)求,的值;(Ⅱ)求的值.19.在△ABC中,中線長AM=2.(1)若=-2,求證:++=0;(2)若P為中線AM上的一個動點,求·(+)的最小值.20.已知等比數(shù)列滿足,,等差數(shù)列滿足,,求數(shù)列的前項和.21.已知向量,,.(1)若,求的值;(2)設(shè),若恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【題目詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),由平面向量模的三角不等式可得,當(dāng)且僅當(dāng)點的坐標為時,等號成立,因此,的最大值為.故選:C.【題目點撥】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.2、D【解題分析】
四個交點中的任何一個到焦點的距離和都是,然后分析正六邊形中的長度和焦距的關(guān)系,從而建立等式求解.【題目詳解】設(shè)橢圓的焦點是,圓與橢圓的四個交點是,設(shè),,,,.故選D.【題目點撥】本題考查了橢圓的定義和橢圓的性質(zhì),屬于基礎(chǔ)題型3、B【解題分析】
利用平面向量數(shù)量積和定義計算出,可得出結(jié)果.【題目詳解】向量、的夾角為,,,則.故選:B.【題目點撥】本題考查利用平面向量的數(shù)量積來計算平面向量的模,在計算時,一般將模進行平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查計算能力,屬于中等題.4、B【解題分析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的圖象向左平移φ(0<φ<)個單位,得到g(x)=2sin(2x-2φ﹣).為偶函數(shù),故得到,故得到2sin(-2φ﹣)=-2或2,.因為,故得到,k=-1,的值為.故答案為B.5、B【解題分析】
根據(jù)等差中項以及余弦定理即可.【題目詳解】因為,,成等差數(shù)列,得為直角三角形為等腰直角三角形,所以選擇B【題目點撥】本題主要考查了等差中項和余弦定理,若為等差數(shù)列,則,屬于基礎(chǔ)題.6、A【解題分析】
在△ABC中,利用正弦定理與兩角和的正弦化簡已知可得,sin(A+C)=sinB,結(jié)合a>b,即可求得答案.【題目詳解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故選A.【題目點撥】本題考查兩角和與差的正弦函數(shù)與正弦定理的應(yīng)用,考查了大角對大邊的性質(zhì),屬于中檔題.7、A【解題分析】
由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【題目詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【題目點撥】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.8、D【解題分析】
設(shè)首項為,利用等比數(shù)列的求和公式與通項公式求解即可.【題目詳解】設(shè)首項為,因為等比數(shù)列的公比,所以,故選:D.【題目點撥】本題主要考查等比數(shù)列的求和公式與通項公式,熟練掌握基本公式是解題的關(guān)鍵,屬于基礎(chǔ)題.9、B【解題分析】
直接應(yīng)用斜率公式,解方程即可求出的值.【題目詳解】因為過點的直線的斜率為,所以有,故本題選B.【題目點撥】本題考查了直線斜率公式,考查了數(shù)學(xué)運算能力.10、A【解題分析】作出約束條件所表示的平面區(qū)域,如圖所示,四邊形所示,作出直線,由幾何概型的概率計算公式知的概率,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解題分析】
在中,利用余弦定理得到,即可求解,得到答案.【題目詳解】由余弦定理可得,解得.故答案為:7.【題目點撥】本題主要考查了余弦定理的應(yīng)用,其中解答中熟記三角形的余弦定理,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、2【解題分析】
由向量的模長公式,計算得到答案.【題目詳解】因為向量,所以,所以答案為.【題目點撥】本題考查向量的模長公式,屬于簡單題.13、【解題分析】
根據(jù)向量夾角公式可求出結(jié)果.【題目詳解】.【題目點撥】本題考查了向量夾角的運算,牢記平面向量的夾角公式是破解問題的關(guān)鍵.14、【解題分析】所求的等比中項為:.15、3【解題分析】
先根據(jù)計算,化簡函數(shù),再根據(jù)當(dāng)時,函數(shù)取得最小值,代入計算得到答案.【題目詳解】或當(dāng)時,函數(shù)取得最小值:或(舍去)故答案為3【題目點撥】本題考查了三角函數(shù)的化簡,輔助角公式,函數(shù)的最值,綜合性較強,意在考查學(xué)生的綜合應(yīng)用能力和計算能力.16、【解題分析】
依據(jù)等比數(shù)列的定義以及無窮等比數(shù)列求和公式,列出方程,即可求出的表達式,再利用求值域的方法求出其范圍?!绢}目詳解】由題意有,即,因為,所以。【題目點撥】本題主要考查無窮等比數(shù)列求和公式的應(yīng)用以及基本函數(shù)求值域的方法。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,【解題分析】
(1)根據(jù)條件求解出公比,然后寫出等比數(shù)列通項;(2)先表示出,然后考慮的的最小值.【題目詳解】(1)因為,所以或,又,則,所以;(2)因為,則,當(dāng)為偶數(shù)時有不符合;所以為奇數(shù),且,,所以且為奇數(shù),故.【題目點撥】本題考查等比數(shù)列通項及其前項和的應(yīng)用,難度一般.對于公比為負數(shù)的等比數(shù)列,分析前項和所滿足的不等式時,注意分類討論,因此的奇偶會影響的正負.18、(Ⅰ),.(Ⅱ).【解題分析】試題分析:(Ⅰ)結(jié)合角的范圍和同角三角函數(shù)基本關(guān)系可得,.(Ⅱ)將原式整理變形,結(jié)合(Ⅰ)的結(jié)論可得其值為.試題解析:(Ⅰ)因為,所以,由于,所以,所以.(Ⅱ)原式..19、(1)見解析;(2)最小值-2.【解題分析】
試題分析:(1)∵M是BC的中點,∴=(+).代入=-2,得=--,即++=0(2)若P為中線AM上的一個動點,若AM=2,我們易將·(+),轉(zhuǎn)化為-2||||=2(x-1)2-2的形式,然后根據(jù)二次函數(shù)在定區(qū)間上的最值的求法,得到答案.試題解析:(1)證明:∵M是BC的中點,∴=(+)代入=-2,得=--,即++=0(2)設(shè)||=x,則||=2-x(0≤x≤2)∵M是BC的中點,∴+=2∴·(+)=2·=-2||||=-2x(2-x)=2(x2-2x)=2(x-1)2-2,當(dāng)x=1時,取最小值-2考點:平面向量數(shù)量積的運算.【題目詳解】請在此輸入詳解!20、【解題分析】
由等比數(shù)列易得公比和,進而可得等差數(shù)列的首項和公差,代入求和公式計算可得.【題目詳解】解:∵等比數(shù)列滿足,,
∴公比,
,
,
∴等差數(shù)列中,
∴公差,
∴數(shù)列的前項和.【題目點撥】本題考查等差數(shù)列的求和公式,涉及等比數(shù)列的通項公式,求出數(shù)列的首項和公差是解決問題的關(guān)鍵,屬基礎(chǔ)題.21、(1);(2).【解題分析】
(1)由,轉(zhuǎn)化為,利用弦化切的思想得出的值,從而求出的值;(2)由,轉(zhuǎn)化為,然后利用平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運動器材前臺工作總結(jié)
- 美術(shù)課教學(xué)創(chuàng)新策略計劃
- 網(wǎng)絡(luò)行業(yè)安全管理工作總結(jié)
- 2025年全球及中國全向條碼掃描儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球快速部署式負壓帳篷行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國液壓驅(qū)動氣舉閥系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球風(fēng)機葉片運輸車行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國汽車振動臺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國無塑食品軟包涂層紙行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球紫外波段高光譜成像(HSI)設(shè)備行業(yè)調(diào)研及趨勢分析報告
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級上學(xué)期期末質(zhì)量檢測綜合物理試題(含答案)
- 導(dǎo)播理論知識培訓(xùn)班課件
- 電廠檢修安全培訓(xùn)課件
- 四大名繡課件-高一上學(xué)期中華傳統(tǒng)文化主題班會
- 起重機械生產(chǎn)單位題庫質(zhì)量安全員
- 高中生物選擇性必修1試題
- 2023年高考英語考前必練-非謂語動詞(含近三年真題及解析)
- 高??萍汲晒D(zhuǎn)化政策與案例分享
- 全國職工拔河比賽執(zhí)行方案
- 冶金廠、軋鋼廠工藝流程圖
- 《民航服務(wù)溝通技巧》教案第15課民航服務(wù)人員下行溝通的技巧
評論
0/150
提交評論