版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆貴州省實驗中學(xué)數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的值為()A. B.1 C. D.2.已知是第二象限角,()A. B. C. D.3.若角的頂點與坐標(biāo)原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.4.中,,則()A. B. C.或 D.05.某人打靶時連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.兩次都中靶D.兩次都不中靶6.已知為遞增等比數(shù)列,則()A. B.5 C.6 D.7.已知圓:及直線:,當(dāng)直線被截得的弦長為時,則等于()A. B. C. D.8.三角形的三條邊長是連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則該三角形的最大邊長為()A.4 B.5 C.6 D.79.甲、乙兩位射擊運動員的5次比賽成績(單位:環(huán))如莖葉圖所示,若兩位運動員平均成績相同,則成績較穩(wěn)定(方差較小)的那位運動員成績的方差為A.2 B.4 C.6 D.810.直線x﹣y+2=0與圓x2+(y﹣1)2=4的位置關(guān)系是()A.相交 B.相切 C.相離 D.不確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則________.12.在四面體A-BCD中,AB=AC=DB=DC=BC,且四面體A-BCD的最大體積為,則四面體A-BCD外接球的表面積為________.13.若數(shù)列滿足,且對于任意的,都有,則___;數(shù)列前10項的和____.14.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為__________.15.在平面直角坐標(biāo)系中,經(jīng)過三點(0,0),(1,1),(2,0)的圓的方程為__________.16.已知:,則的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐的底面為平行四邊形,為中點.(1)求證:平面;(2)求證:平面.18.如圖,在平面直角坐標(biāo)系中,銳角、的終邊分別與單位圓交于、兩點.(1)如果,點的橫坐標(biāo)為,求的值;(2)已知點,函數(shù),若,求.19.一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:溫度20253035產(chǎn)卵數(shù)/個520100325(1)根據(jù)散點圖判斷與哪一個更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))參考數(shù)據(jù):,,,,,,,,,,5201003251.6134.615.7820.已知,.(1)求;(2)求.21.已知數(shù)列為等差數(shù)列,是數(shù)列的前n項和,且,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
化為齊次分式,分子分母同除以,化弦為切,即可求解.【題目詳解】.故選:B.【題目點撥】本題考查已知三角函數(shù)值求值,通過齊次分式化弦為切,屬于基礎(chǔ)題.2、A【解題分析】cosα=±=±,又∵α是第二象限角,∴cosα=-.3、C【解題分析】
根據(jù)三角函數(shù)定義結(jié)合正弦的二倍角公式計算即可【題目詳解】由題意,∴,,.故選:C.【題目點撥】本題考查三角函數(shù)的定義,考查二倍角的正弦公式,掌握三角函數(shù)定義是解題關(guān)鍵.4、D【解題分析】
根據(jù)正弦定理把角化為邊,可得,然后根據(jù)余弦定理,可得,最后使用余弦定理,可得結(jié)果.【題目詳解】由,所以,即由,又所以,則故,又故選:D【題目點撥】本題考查正弦定理、余弦定理的應(yīng)用,屬基礎(chǔ)題.5、D【解題分析】
根據(jù)互斥事件的定義逐個分析即可.【題目詳解】“至少有一次中靶”與“至多有一次中靶”均包含中靶一次的情況.故A錯誤.“至少有一次中靶”與“只有一次中靶”均包含中靶一次的情況.故B錯誤.“至少有一次中靶”與“兩次都中靶”均包含中靶兩次的情況.故C錯誤.根據(jù)互斥事件的定義可得,事件“至少有一次中靶”的互斥事件是“兩次都不中靶”.故選:D【題目點撥】本題主要考查了互斥事件的辨析,屬于基礎(chǔ)題型.6、D【解題分析】
設(shè)數(shù)列的公比為,根據(jù)等比數(shù)列的性質(zhì),得,又由,求得,進(jìn)而可求解的值,得到答案.【題目詳解】根據(jù)題意,等比數(shù)列中,設(shè)其公比為,因為,則有,又由,且,解得,所以,所以,故選D.【題目點撥】本題主要考查了等比數(shù)列的通項公式和等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、C【解題分析】
求出圓心到直線的距離,由垂徑定理計算弦長可解得.【題目詳解】由題意,圓心為,半徑為2,圓心到直線的距離為,所以,解得.故選:C.【題目點撥】本題考查直線與圓相交弦長問題,解題方法由垂徑定理得垂直,由勾股定理列式計算.8、C【解題分析】
根據(jù)三角形滿足的兩個條件,設(shè)出三邊長分別為,三個角分別為,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出,然后利用余弦定理得到,將表示出的代入,整理后得到關(guān)于的方程,求出方程的解得到的值,【題目詳解】解:設(shè)三角形三邊是連續(xù)的三個自然,三個角分別為,
由正弦定理可得:,
,
再由余弦定理可得:,
化簡可得:,解得:或(舍去),
∴,故三角形的三邊長分別為:,故選:C.【題目點撥】此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.9、A【解題分析】
根據(jù)平均數(shù)相同求出x的值,再根據(jù)方差的定義計算即可.【題目詳解】根據(jù)莖葉圖中的數(shù)據(jù)知,甲、乙二人的平均成績相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均數(shù)為=90;根據(jù)莖葉圖中的數(shù)據(jù)知甲的成績波動性小,較為穩(wěn)定(方差較小),所以甲成績的方差為s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故選A.【題目點撥】莖葉圖的優(yōu)點是保留了原始數(shù)據(jù),便于記錄及表示,能反映數(shù)據(jù)在各段上的分布情況.莖葉圖不能直接反映總體的分布情況,這就需要通過莖葉圖給出的數(shù)據(jù)求出數(shù)據(jù)的數(shù)字特征,進(jìn)一步估計總體情況.10、A【解題分析】
求得圓心到直線的距離,然后和圓的半徑比較大小,從而判定兩者位置關(guān)系,得到答案.【題目詳解】由題意,可得圓心到直線的距離為,所以直線與圓相交.故選:A.【題目點撥】本題主要考查了直線與圓的位置關(guān)系判定,其中解答中熟記直線與圓的位置關(guān)系的判定方法是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由二倍角求得α,則tanα可求.【題目詳解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,則,即.∴.故答案為:.【題目點撥】本題考查三角函數(shù)的恒等變換及化簡求值,考查公式的靈活應(yīng)用,屬于基礎(chǔ)題.12、【解題分析】
當(dāng)面ABC面與BCD垂直時,四面體A-BCD的體積最大,根據(jù)最大體積為求出四面體的邊長,又△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心位于的中點,從而得到半徑,即可求解.【題目詳解】如圖所示:當(dāng)面ABC面與BCD垂直時,四面體A-BCD的體積最大為,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心為的中點,又,解得,,,所以四面體A-BCD外接球的半徑故四面體A-BCD外接球的表面積為.【題目點撥】本題考查多面體的外接圓及相關(guān)計算,多面體外接圓問題關(guān)鍵在圓心和半徑.13、,【解題分析】試題分析:由得由得,所以數(shù)列為等比數(shù)列,因此考點:等比數(shù)列通項與和項14、.【解題分析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.15、【解題分析】分析:由題意利用待定系數(shù)法求解圓的方程即可.詳解:設(shè)圓的方程為,圓經(jīng)過三點(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式.16、【解題分析】
由已知條件將兩個角的三角函數(shù)轉(zhuǎn)化為一個角的三角函數(shù),再運用三角函數(shù)的值域求解.【題目詳解】由已知得,所以,又因為,所以,解得,所以,故填.【題目點撥】本題考查三角函數(shù)的值域,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解題分析】
(1)通過證明得線面平行;(2)連接交于,連接,通過證明得線面平行.【題目詳解】(1)由題:四棱錐的底面為平行四邊形,所以,平面,平面,所以平面;(2)連接交于,連接,如圖:底面為平行四邊形,是中點,為中點,所以,平面,平面,所以平面.【題目點撥】此題考查線面平行的證明,關(guān)鍵在于準(zhǔn)確尋找出線線平行,證明題注意書寫規(guī)范.18、(1);(2)【解題分析】
(1)根據(jù)條件求出的正余弦值,利用兩角和的余弦公式計算即可(2)利用向量的數(shù)量積坐標(biāo)公式運算可得,由求出即可求解.【題目詳解】(1),為銳角,則,點的橫坐標(biāo)為,即有,,則;(2)由題意可知,,,則,即,由,可得,則,即有..【題目點撥】本題主要考查了單位圓,三角函數(shù)的定義,同角三角函數(shù)之間的關(guān)系,向量數(shù)量積的坐標(biāo)運算,屬于中檔題.19、(I)選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型;(II);(III)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在以下.【解題分析】
(I)由于散點圖類似指數(shù)函數(shù)的圖像,由此選擇.(II)對;兩邊取以為底底而得對數(shù),將非線性回歸的問題轉(zhuǎn)化為線性回歸的問題,利用回歸直線方程的計算公式計算出回歸直線方程,進(jìn)而化簡為回歸曲線方程.(III)令,解指數(shù)不等式求得溫度的控制范圍.【題目詳解】(I)依散點圖可知,選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型。(II)因為,令,所以與可看成線性回歸,,所以,所以,即,(III)由即,解得,要使得產(chǎn)卵數(shù)不超過50,則溫度控制在以下。【題目點撥】本小題主要考查散點圖的判斷,考查非線性回歸的求解方法,考查線性歸回直線方程的計算公式,考查了利用回歸方程進(jìn)行預(yù)測.屬于中檔題.解題的關(guān)鍵點有兩個,首先是根據(jù)散點圖選擇出恰當(dāng)?shù)幕貧w方程,其次是要將非線性回歸的問題,轉(zhuǎn)化為線性回歸來求解.20、(1),(2)【解題分析】
(1)由題意利用同角三角函數(shù)的基本關(guān)系,以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保安服務(wù)行業(yè)年金管理辦法
- 物料分析編碼規(guī)范
- 建筑工程節(jié)能改造單位勞動合同
- 2024年超市導(dǎo)購員勞動合同范本:顧客滿意度提升策略3篇
- 餐飲業(yè)食品安全管理辦法
- 醫(yī)院人力資源總監(jiān)聘用合同
- 金融投資專家管理辦法
- 屋頂廣告牌租賃協(xié)議
- 試用合同協(xié)議書
- 2025廣東省勞動合同樣本
- 2024年鄂爾多斯市中考英語試卷真題(含答案解析)
- 第3課光的反射(教學(xué)設(shè)計)五年級科學(xué)上冊
- DL∕T 677-2018 發(fā)電廠在線化學(xué)儀表檢驗規(guī)程
- 馬克思主義與社會科學(xué)方法論課后思考題答案全
- 部編《道德與法治》四年級上冊復(fù)習(xí)教案
- 幼兒園教師職稱五套試題及答案
- 幼兒園中班語言課件:《小花貓交朋友》
- 七年級歷史下冊教學(xué)工作計劃
- 《架空輸電線路直升機巡視技術(shù)導(dǎo)則》
- 熱工基礎(chǔ)課后答案超詳細(xì)版(張學(xué)學(xué))
- 食品工藝學(xué)(魯東大學(xué))智慧樹知到期末考試答案2024年
評論
0/150
提交評論