浙江省嘉興市七校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
浙江省嘉興市七校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
浙江省嘉興市七校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
浙江省嘉興市七校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
浙江省嘉興市七校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省嘉興市七校2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實(shí)數(shù)的最小值是()A. B. C. D.2.已知為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且,過(guò)點(diǎn)的動(dòng)直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為.給出下列四個(gè)命題:①在拋物線上滿足條件的點(diǎn)僅有一個(gè);②若是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為;③無(wú)論過(guò)點(diǎn)的直線在什么位置,總有;④若點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)在同一條直線上.其中所有正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.43.若復(fù)數(shù)滿足,則()A. B. C. D.4.下圖中的圖案是我國(guó)古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.5.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項(xiàng)和,若存在使得,則()A.10 B.11 C.12 D.136.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.77.直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.78.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.9.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.10.已知,,,則的大小關(guān)系為()A. B. C. D.11.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-112.函數(shù)的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的各個(gè)點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長(zhǎng)為_(kāi)_________.14.已知函數(shù)的圖象在處的切線斜率為,則______.15.在中,角,,的對(duì)邊分別是,,,若,,則的面積的最大值為_(kāi)_____.16.已知函數(shù),若,則實(shí)數(shù)的取值范圍為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.18.(12分)已知函數(shù),(Ⅰ)當(dāng)時(shí),證明;(Ⅱ)已知點(diǎn),點(diǎn),設(shè)函數(shù),當(dāng)時(shí),試判斷的零點(diǎn)個(gè)數(shù).19.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.20.(12分)已知數(shù)列的前n項(xiàng)和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)若數(shù)列中去掉數(shù)列的項(xiàng)后余下的項(xiàng)按原順序組成數(shù)列,求的值.21.(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時(shí),求直線的方程.22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)若的解集為,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對(duì)稱性可求實(shí)數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)解析式為,故.令,,解得,.因?yàn)闉榕己瘮?shù),故直線為其圖象的對(duì)稱軸,令,,故,,因?yàn)椋?,?dāng)時(shí),.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對(duì)自變量做加減,比如把的圖象向右平移1個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對(duì)稱軸,則有,本題屬于中檔題.2、C【解析】

①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,通過(guò)分析可知當(dāng)三點(diǎn)共線時(shí)取最小值,由兩點(diǎn)間的距離公式,可求此時(shí)最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;④:計(jì)算直線的斜率之差,可得兩直線斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線上.【詳解】解:對(duì)于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點(diǎn)有二個(gè),故①不正確;對(duì)于②,不妨設(shè),則關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,故,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立,故②正確;對(duì)于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點(diǎn)坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補(bǔ),所以,故③正確.對(duì)于④,由題意知,由③知,則,由,知,即三點(diǎn)在同一條直線上,故④正確.故選:C.【點(diǎn)睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個(gè)命題,結(jié)合初中的“飲馬問(wèn)題”分析出何時(shí)取最小值.3、C【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:由,得,∴.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.4、C【解析】令圓的半徑為1,則,故選C.5、D【解析】

利用等差數(shù)列的通項(xiàng)公式可得,再利用等差數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時(shí),.故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.6、B【解析】考點(diǎn):程序框圖.分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過(guò)程中各變量的值的變化情況,不難給出答案.解:程序在運(yùn)行過(guò)程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時(shí)退出,故選B.7、B【解析】

根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.8、B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問(wèn)題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.9、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.10、A【解析】

根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因?yàn)?,所?因?yàn)椋?,因?yàn)?,為增函?shù),所以所以,故選:A.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.11、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.12、A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)?,所以,解得,故答案為:【點(diǎn)睛】本題主要考查幾何體的切割問(wèn)題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,14、【解析】

先對(duì)函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問(wèn)題,屬于基礎(chǔ)題.15、【解析】

化簡(jiǎn)得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.【點(diǎn)睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.16、【解析】

畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相反的單調(diào)性.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案不唯一,具體見(jiàn)解析(2)【解析】

(1)由于函數(shù),得出,分類討論當(dāng)和時(shí),的正負(fù),進(jìn)而得出的單調(diào)性;(2)求出,令,得,設(shè),通過(guò)導(dǎo)函數(shù),可得出在上的單調(diào)性和值域,再分類討論和時(shí),的單調(diào)性,再結(jié)合,恒成立,即可求出的取值范圍.【詳解】解:(1)因?yàn)椋?,①?dāng)時(shí),,在上單調(diào)遞減.②當(dāng)時(shí),令,則;令,則,所以在單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.(2)因?yàn)?,可知,,令,?設(shè),則.當(dāng)時(shí),,在上單調(diào)遞增,所以在上的值域是,即.當(dāng)時(shí),沒(méi)有實(shí)根,且,在上單調(diào)遞減,,符合題意.當(dāng)時(shí),,所以有唯一實(shí)根,當(dāng)時(shí),,在上單調(diào)遞增,,不符合題意.綜上,,即的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和根據(jù)恒成立問(wèn)題求參數(shù)范圍,還運(yùn)用了構(gòu)造函數(shù)法,還考查分類討論思想和計(jì)算能力,屬于難題.18、(Ⅰ)詳見(jiàn)解析;(Ⅱ)1.【解析】

(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點(diǎn),點(diǎn),∴,.①當(dāng)時(shí),可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個(gè)零點(diǎn),②當(dāng)時(shí),,,∴,∴在恒成立,∴在無(wú)零點(diǎn).③當(dāng)時(shí),,.∴在單調(diào)遞減,,.∴在存在一個(gè)零點(diǎn).綜上,的零點(diǎn)個(gè)數(shù)為1..【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)問(wèn)題,考查了分類討論思想,屬于壓軸題.19、(1);(2)【解析】

(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)?,所以,即,即,所?(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.20、(1)證明見(jiàn)解析,;(2)11202.【解析】

(1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項(xiàng)公式;(2)由(1)中的可求出,根據(jù)和求出數(shù)列,中的公共項(xiàng),分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,可得答案.【詳解】(1)證明:因?yàn)閚,,成等差數(shù)列,所以,①所以.②①-②,得,所以.又當(dāng)時(shí),,所以,所以,故數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,所以,即.(2)根據(jù)(1)求解知,,,所以,所以數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列.又因?yàn)?,,,,,,,,,,,所?【點(diǎn)睛】本題考查等比數(shù)列的定義,考查分組求和,屬于中檔題.21、(1)證明見(jiàn)解析;(2)①;②.【解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論