版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆山西大學(xué)附屬中學(xué)高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的值()A.小于0 B.大于0 C.等于0 D.不小于02.已知為銳角,角的終邊過點,則()A. B. C. D.3.設(shè)二次函數(shù)在區(qū)間上單調(diào)遞減,且,則實數(shù)的取值范圍是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]4.已知一個平面,那么對于空間內(nèi)的任意一條直線,在平面內(nèi)一定存在一條直線,使得與()A.平行B.相交C.異面D.垂直5.中,分別是內(nèi)角的對邊,且,,則等于()A. B. C. D.6.已知數(shù)列和數(shù)列都是無窮數(shù)列,若區(qū)間滿足下列條件:①;②;則稱數(shù)列和數(shù)列可構(gòu)成“區(qū)間套”,則下列可以構(gòu)成“區(qū)間套”的數(shù)列是()A., B.,C., D.,7.下面結(jié)論中,正確結(jié)論的是()A.存在兩個不等實數(shù),使得等式成立B.(0<x<π)的最小值為4C.若是等比數(shù)列的前項的和,則成等比數(shù)列D.已知的三個內(nèi)角所對的邊分別為,若,則一定是銳角三角形8.直線的傾斜角是()A. B. C. D.9.已知實心鐵球的半徑為,將鐵球熔成一個底面半徑為、高為的圓柱,則()A. B. C. D.10.已知底面半徑為1,體積為的圓柱,內(nèi)接于一個高為圓錐(如圖),線段AB為圓錐底面的一條直徑,則從點A繞圓錐的側(cè)面到點B的最短距離為()A.8 B. C. D.4二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在三棱錐中,它的每個面都是全等的正三角形,是棱上的動點,設(shè),分別記與,所成角為,,則的取值范圍為__________.12.化簡sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.13.在正方體中,是棱的中點,則異面直線與所成角的余弦值為__________.14.若點為圓的弦的中點,則弦所在的直線的方程為___________.15.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②先將函數(shù)的圖象上各點縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,再將所得函數(shù)圖象整體向左平移個單位,可得函數(shù)的圖象;③函數(shù)有三個零點;④函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.其中正確的是__________.(填上所有正確說法的序號)16.在空間直角坐標(biāo)系中,點關(guān)于原點的對稱點的坐標(biāo)為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.中,內(nèi)角,,所對的邊分別是,,,已知.(1)求角的大??;(2)設(shè),的面積為,求的值.18.設(shè)向量.(1)當(dāng)時,求的值;(2)若,且,求的值.19.在平面直角坐標(biāo)系中,已知射線與射線,過點作直線l分別交兩射線于點A、B(不同于原點O).(1)當(dāng)取得最小值時,直線l的方程;(2)求的最小值;20.已知.(1)設(shè),求滿足的實數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).21.已知平面向量,.(1)若與垂直,求;(2)若,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
確定各個角的范圍,由三角函數(shù)定義可確定正負(fù).【題目詳解】∵,∴,,,∴.故選:A.【題目點撥】本題考查各象限角三角函數(shù)的符號,掌握三角函數(shù)定義是解題關(guān)鍵.2、B【解題分析】
由題意利用任意角的三角函數(shù)的定義求得和,再利用同角三角函數(shù)的基本關(guān)系求得的值,再利用兩角差的余弦公式求得的值.【題目詳解】角的終邊過點,,又為銳角,由,可得故選B.【題目點撥】本題考查任意角的三角函數(shù)的定義,考查兩角差的余弦,是基礎(chǔ)題.3、D【解題分析】
求出導(dǎo)函數(shù),題意說明在上恒成立(不恒等于0),從而得,得開口方向,及函數(shù)單調(diào)性,再由函數(shù)性質(zhì)可解.【題目詳解】二次函數(shù)在區(qū)間上單調(diào)遞減,則,,所以,即函數(shù)圖象的開口向上,對稱軸是直線.所以f(0)=f(2),則當(dāng)時,有.【題目點撥】實際上對二次函數(shù),當(dāng)時,函數(shù)在遞減,在上遞增,當(dāng)時,函數(shù)在遞增,在上遞減.4、D【解題分析】略5、D【解題分析】試題分析:由已知得,解得(舍)或,又因為,所以,由正弦定理得.考點:1、倍角公式;2、正弦定理.6、C【解題分析】
直接利用已知條件,判斷選項是否滿足兩個條件即可.【題目詳解】由題意,對于A:,,∵,∴不成立,所以A不正確;對于B:由,,得不成立,所以B不正確;對于C:,∵,∴成立,并且也成立,所以C正確;對于D:由,,得,∴不成立,所以D不正確;故選:C.【題目點撥】本題考查新定義的理解和運用,考查數(shù)列的極限的求法,考查分析問題解決問題的能力及運算能力,屬于中檔題.7、A【解題分析】
對各個選項逐一判斷,對于選項A,由,代入計算,即可判斷是否正確;對于選項B,設(shè),結(jié)合函數(shù)的單調(diào)性,即可判斷是否正確;對于選項C,由公比為為偶數(shù),即可判斷是否正確;對于選項D,由余弦定理,即可判斷是否正確.【題目詳解】對于選項A,兩個不等實數(shù),使得等式成立,故A正確;對于選項B,若設(shè)設(shè),可得在遞減,即函數(shù)的最小值為,故B錯誤;對于選項C,是等比數(shù)列的前項的和,當(dāng)公比,為偶數(shù)時,則,均為,不能夠成等比數(shù)列,故C錯誤;對于選項D,中,若,可得,即為銳角,不能判斷一定是銳角三角形,故D錯誤.故選:A.【題目點撥】本題考查兩角和的正弦公式、基本不等式和等比數(shù)列的性質(zhì),以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.8、B【解題分析】
先求斜率,即傾斜角的正切值,易得.【題目詳解】,可知,即,故選B【題目點撥】一般直線方程求傾斜角將直線轉(zhuǎn)換為斜截式直線方程易得斜率,然后再根據(jù)直線的斜率等于傾斜角的正切值易得傾斜角,屬于簡單題目.9、B【解題分析】
根據(jù)變化前后體積相同計算得到答案.【題目詳解】故答案選B【題目點撥】本題考查了球體積,圓柱體積,抓住變化前后體積不變是解題的關(guān)鍵.10、C【解題分析】
先求解圓錐的底面半徑,再根據(jù)側(cè)面展開圖的結(jié)構(gòu)計算扇形中間的距離即可.【題目詳解】設(shè)圓柱的高為,則,得.因為,所以為的中位線,所以,則.即圓錐的底面半徑為1,母線長為4,則展開后所得扇形的弧長為,圓心角為.所以從點A繞圓錐的側(cè)面到點B的最短距離為.故選:C.【題目點撥】本題主要考查了圓柱與圓錐內(nèi)切求解有關(guān)量的問題以及圓錐的側(cè)面積展開求距離最小值的問題.屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
作交于,連接,可得是與所成的角根據(jù)等腰三角形的性質(zhì),作交于,同理可得,根據(jù),的關(guān)系即可得解.【題目詳解】解:作交于,連接,因為三棱錐中,它的每個面都是全等的正三角形,為正三角形,,,是與所成的角,根據(jù)等腰三角形的性質(zhì).作交于,同理可得,則,∵,∴,得.故答案為:【題目點撥】本題考查異面直線所成的角,屬于中檔題.12、1【解題分析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.13、【解題分析】
假設(shè)正方體棱長,根據(jù)//,得到異面直線與所成角,計算,可得結(jié)果.【題目詳解】假設(shè)正方體棱長為1,因為//,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【題目點撥】本題考查異面直線所成的角,屬基礎(chǔ)題.14、;【解題分析】
利用垂徑定理,即圓心與弦中點連線垂直于弦.【題目詳解】圓標(biāo)準(zhǔn)方程為,圓心為,,∵是中點,∴,即,∴的方程為,即.故答案為.【題目點撥】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).15、②③④【解題分析】
根據(jù)向量,函數(shù)零點,函數(shù)的導(dǎo)數(shù),以及三角函數(shù)有關(guān)知識,對各個命題逐個判斷即可.【題目詳解】對①,若與的夾角為鈍角,則且與不共線,即,解得且,所以①錯誤;對②,先將函數(shù)的圖象上各點縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,得函數(shù)的圖象,再將圖象整體向左平移個單位,可得函數(shù)的圖象,②正確;對③,函數(shù)的零點個數(shù),即解的個數(shù),亦即函數(shù)與的圖象的交點個數(shù),作出兩函數(shù)的圖象,如圖所示:由圖可知,③正確;對④,,當(dāng)時,,當(dāng)時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,④正確.故答案為:②③④.【題目點撥】本題主要考查命題的真假判斷,涉及向量數(shù)量積,三角函數(shù)圖像變換,函數(shù)零點個數(shù)的求法,以及函數(shù)單調(diào)性的判斷等知識的應(yīng)用,屬于中檔題.16、【解題分析】
空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).【題目詳解】空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).點關(guān)于原點的對稱點的坐標(biāo)為故答案為:【題目點撥】本題考查了空間直角坐標(biāo)系關(guān)于原點對稱,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)利用正弦定理可將已知等式化為,利用兩角和差余弦公式展開整理可求得,根據(jù)可求得結(jié)果;(2)利用三角形面積公式可構(gòu)造方程求出;利用余弦定理可直接求得結(jié)果.【題目詳解】(1)由正弦定理可得:,即(2)設(shè)的面積為,則由得:,解得:由余弦定理得:【題目點撥】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、三角形面積公式和余弦定理的應(yīng)用;關(guān)鍵是能夠通過正弦定理將邊化角,得到角的一個三角函數(shù)值,從而根據(jù)角的范圍求得結(jié)果.18、(1);(2).【解題分析】
(1)直接由向量的模長公式進行計算.
(2)由向量平行的公式可得,再用余弦的二倍角和正弦的和角公式,然后再轉(zhuǎn)化為的式子,代值即可.【題目詳解】(1)因為,所以,所以.(2)由得,所以,故.【題目點撥】本題考查向量求模長和向量的平行的坐標(biāo)公式的利用,以及三角函數(shù)的化簡求值,屬于基礎(chǔ)題.19、(1);(2)6.【解題分析】
(1)設(shè),,利用三點共線可得的關(guān)系,計算出后由基本不等式求得最小值.從而得直線方程;(2)由(1)中所設(shè)坐標(biāo)計算出,利用基本不等式由(1)中所得關(guān)系可得的最小值,從而得的最小值.【題目詳解】(1)設(shè),,因為A,B,M三點共線,所以與共線,因為,,所以,得,即,,等號當(dāng)且僅當(dāng)時取得,此時直線l的方程為.(2)因為由,所以,當(dāng)且僅當(dāng)時取得等號,所以當(dāng)時,取最小值6.【題目點撥】本題考查直線方程的應(yīng)用,考查三點共線的向量表示,考查用基本不等式求最值.用基本不等式求最值時要根據(jù)目標(biāo)函數(shù)的特征采取不同的方法,如(1)中用“1”的代換配湊出基本不等式的條件求得最值,(2)直接由已知應(yīng)用基本不等式求最值.20、(1);(2).【解題分析】
(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標(biāo)策略大揭秘3篇
- 按摩店合伙協(xié)議書范本3篇
- 教育培訓(xùn)勞動合同范本2篇
- 尾氣減排志愿者行動3篇
- 撤訴授權(quán)書格式撰寫要點3篇
- 文明進步守則3篇
- 交通園區(qū)機場建設(shè)協(xié)議
- 拍賣場地租賃協(xié)議
- 金融服務(wù)合同簽訂及執(zhí)行管理辦法
- 商業(yè)區(qū)步行街護欄裝修合同
- GB/T 19752-2024混合動力電動汽車動力性能試驗方法
- 倫理與社會責(zé)任智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- (高清版)JTGT 3610-2019 公路路基施工技術(shù)規(guī)范
- 《我國二手車市場的現(xiàn)狀及前景【論文】4600字》
- (完整)公共衛(wèi)生基本知識考試題題庫及答案
- 《紅樓夢》作品簡介名著導(dǎo)讀 國學(xué)經(jīng)典 PPT模板
- EBV相關(guān)TNK細(xì)胞淋巴組織增殖性疾病
- 中國電信-員工手冊(共20頁)
- 畢業(yè)設(shè)計(論文)驅(qū)動橋畢業(yè)設(shè)計
- 宜都市產(chǎn)業(yè)集群基本情況及產(chǎn)業(yè)鏈
- SF_T 0119-2021 聲像資料鑒定通用規(guī)范_(高清版)
評論
0/150
提交評論