版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省示范初中數(shù)學(xué)高一下期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.閱讀如圖的程序框圖,運行該程序,則輸出的值為()A.3 B.1C.-1 D.02.已知的三個內(nèi)角所對的邊分別為.若,則該三角形的形狀是()A.等邊三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形3.已知銳角中,角所對的邊分別為,若,則的取值范圍是()A. B. C. D.4.己知的周長為,內(nèi)切圓的半徑為,,則的值為()A. B. C. D.5.某學(xué)校有教師200人,男學(xué)生1200人,女學(xué)生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,若女學(xué)生一共抽取了80人,則n的值為()A.193 B.192 C.191 D.1906.若直線與圓相切,則()A. B. C. D.7.已知兩條直線,,兩個平面,,下面說法正確的是()A. B. C. D.8.用數(shù)學(xué)歸納法證明的過程中,設(shè),從遞推到時,不等式左邊為()A. B.C. D.9.在長方體中,,,,則異面直線與所成角的大小為()A. B. C. D.或10.已知等比數(shù)列的前項和為,若,則()A. B. C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,為原點,,動點滿足,則的最大值是.12.已知在中,角A,B,C的對邊分別為a,b,c,,,的面積等于,則外接圓的面積為______.13.已知棱長都相等正四棱錐的側(cè)面積為,則該正四棱錐內(nèi)切球的表面積為________.14.已知,,,若,則__________.15.已知數(shù)列中,,,設(shè),若對任意的正整數(shù),當(dāng)時,不等式恒成立,則實數(shù)的取值范圍是______.16.如圖,在中,,,點D為BC的中點,設(shè),.的值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知定義域為的函數(shù)是奇函數(shù).(Ⅰ)求實數(shù)的值;(Ⅱ)判斷函數(shù)的單調(diào)性,并用定義加以證明.18.已知數(shù)列滿足關(guān)系式,.(1)用表示,,;(2)根據(jù)上面的結(jié)果猜想用和表示的表達(dá)式,并用數(shù)學(xué)歸納法證之.19.已知角、的頂點在平面直角坐標(biāo)系的原點,始邊與軸正半軸重合,且角的終邊與單位圓(圓心在原點,半徑為1的圓)的交點位于第二象限,角的終邊和單位圓的交點位于第三象限,若點的橫坐標(biāo)為,點的縱坐標(biāo)為.(1)求、的值;(2)若,求的值.(結(jié)果用反三角函數(shù)值表示)20.如圖為函數(shù)f(x)=Asin(Ⅰ)求函數(shù)f(x)=Asin(Ⅱ)若x∈0,π2時,函數(shù)y=21.已知的三個內(nèi)角的對邊分別為,且,(1)求證:;(2)若是銳角三角形,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
從起始條件、開始執(zhí)行程序框圖,直到終止循環(huán).【題目詳解】,,,,,輸出.【題目點撥】本題是直到型循環(huán),只要滿足判斷框中的條件,就終止循環(huán),考查讀懂簡單的程序框圖.2、B【解題分析】
利用三角形的內(nèi)角關(guān)系及三角變換公式得到,從而得到,此三角形的形狀可判斷.【題目詳解】因為,故,整理得到,所以,因,所以即,故為等腰三角形,故選B.【題目點撥】本題考查兩角和、差的正弦,屬于基礎(chǔ)題,注意角的范圍的討論.3、B【解題分析】
利用余弦定理化簡后可得,再利用正弦定理把邊角關(guān)系化為角的三角函數(shù)的關(guān)系式,從而得到,因此,結(jié)合的范圍可得所求的取值范圍.【題目詳解】,因為為銳角三角形,所以,,,故,選B.【題目點撥】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.4、C【解題分析】
根據(jù)的周長為,內(nèi)切圓的半徑為,求得,再利用正弦定理,得到,然后代入余弦定理,化簡得到求解.【題目詳解】因為的周長為,內(nèi)切圓的半徑為,所以,又因為,所以.由余弦定理得:,,所以,所以,即,因為A為內(nèi)角,所以,所以.故選:C【題目點撥】本題主要考查了正弦定理和余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.5、B【解題分析】
按分層抽樣的定義,按比例計算.【題目詳解】由題意,解得.故選:B.【題目點撥】本題考查分層抽樣,屬于簡單題.6、C【解題分析】
利用圓心到直線的距離等于圓的半徑即可求解.【題目詳解】由題得圓的圓心坐標(biāo)為(0,0),所以.故選C【題目點撥】本題主要考查直線和圓的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.7、D【解題分析】
滿足每個選項的條件時能否找到反例推翻結(jié)論即可。【題目詳解】A:當(dāng)m,n中至少有一條垂直交線才滿足。B:很明顯m,n還可以異面直線不平行。C:只有當(dāng)m垂直交線時,否則不成立。故選:D【題目點撥】此題考查直線和平面位置關(guān)系,一般通過反例排除法即可解決,屬于較易題目。8、C【解題分析】
比較與時不等式左邊的項,即可得到結(jié)果【題目詳解】因此不等式左邊為,選C.【題目點撥】本題考查數(shù)學(xué)歸納法,考查基本分析判斷能力,屬基礎(chǔ)題9、C【解題分析】
平移CD到AB,則即為異面直線與所成的角,在直角三角形中即可求解.【題目詳解】連接AC1,CD//AB,可知即為異面直線與所成的角,在中,,故選.【題目點撥】本題考查異面直線所成的角.常用方法:1、平移直線到相交;2、向量法.10、A【解題分析】
先通分,再利用等比數(shù)列的性質(zhì)求和即可。【題目詳解】.故選A.【題目點撥】本題考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
試題分析:設(shè),表示以為圓心,r=1為半徑的圓,而,所以,,,故得最大值為考點:1.圓的標(biāo)準(zhǔn)方程;2.向量模的運算12、4π【解題分析】
利用三角形面積公式求解,再利用余弦定理求得,進(jìn)而得到外接圓半徑,再求面積即可.【題目詳解】由,解得..解得.,解得.∴△ABC外接圓的面積為4π.故答案為:4π.【題目點撥】本題主要考查了解三角形中正余弦與面積公式的運用,屬于基礎(chǔ)題型.13、【解題分析】
根據(jù)側(cè)面積求出正四棱錐的棱長,畫出組合體的截面圖,根據(jù)三角形的相似求得四棱錐內(nèi)切球的半徑,于是可得內(nèi)切球的表面積.【題目詳解】設(shè)正四棱錐的棱長為,則,解得.于是該正四棱錐內(nèi)切球的大圓是如圖△PMN的內(nèi)切圓,其中,.∴.設(shè)內(nèi)切圓的半徑為,由∽,得,即,解得,∴內(nèi)切球的表面積為.【題目點撥】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認(rèn)真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.14、-3【解題分析】由可知,解得,15、【解題分析】∵,(,),當(dāng)時,,,…,,并項相加,得:,
∴,又∵當(dāng)時,也滿足上式,
∴數(shù)列的通項公式為,∴
,令(),則,∵當(dāng)時,恒成立,∴在上是增函數(shù),
故當(dāng)時,,即當(dāng)時,,對任意的正整數(shù),當(dāng)時,不等式恒成立,則須使,即對恒成立,即的最小值,可得,∴實數(shù)的取值范圍為,故答案為.點睛:本題考查數(shù)列的通項及前項和,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運算求解能力,注意解題方法的積累,屬于難題通過并項相加可知當(dāng)時,進(jìn)而可得數(shù)列的通項公式,裂項、并項相加可知,通過求導(dǎo)可知是增函數(shù),進(jìn)而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.16、【解題分析】
在和在中,根據(jù)正弦定理,分別表示出.由可得等式,代入已知條件化簡即可得解.【題目詳解】在中,由正弦定理可得,則在中,由正弦定理可得,則點D為BC的中點,則所以因為,,由誘導(dǎo)公式可知代入上述兩式可得所以故答案為:【題目點撥】本題考查了正弦定理的簡單應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)在上單調(diào)遞增,證明見解析【解題分析】
(1)函數(shù)的定義域為,利用奇函數(shù)的必要條件,,求出,再用奇函數(shù)的定義證明;(2)判斷在上單調(diào)遞增,用單調(diào)性的定義證明,任取,求出函數(shù)值,用作差法,證明即可.【題目詳解】解:(Ⅰ)∵函數(shù)是奇函數(shù),定義域為,∴,即,解之得,此時,為奇函數(shù),;(Ⅱ)由(Ⅰ)知,,設(shè),且,∵,∴,∴,即故在上單調(diào)遞增.【題目點撥】本題考查函數(shù)奇偶性的應(yīng)用,注意奇偶性必要條件的運用,減少計算量但要加以證明,考查函數(shù)單調(diào)性的證明,屬于中檔題.18、(1),,(2)猜想:,證明見解析【解題分析】
(1)根據(jù)遞推關(guān)系依次代入求解,(2)根據(jù)規(guī)律猜想,再利用數(shù)學(xué)歸納法證明【題目詳解】解:(1),∴,,;(2)猜想:.證明:當(dāng)時,結(jié)論顯然成立;假設(shè)時結(jié)論成立,即,則時,,即時結(jié)論成立.綜上,對時結(jié)論成立.【題目點撥】本題考查歸納猜想與數(shù)學(xué)歸納法證明,考查基本分析論證能力,屬基礎(chǔ)題19、(1);(2)【解題分析】
(1)可根據(jù)單位圓定義求出,再由二倍角正弦公式即可求解;(2)先求出由可求得,結(jié)合反三角函數(shù)即可求得【題目詳解】(1)由題可知:,,,;(2)由,,又,【題目點撥】本題考查單位圓的定義,二倍角公式的應(yīng)用,兩角差余弦公式的用法,屬于中檔題20、(Ⅰ)f(x)=23【解題分析】
(Ⅰ)根據(jù)三角函數(shù)的圖像,得到周期,求出ω=2,再由函數(shù)零點,得到2×π6+φ=2kπ,k∈Z(Ⅱ)先由題意得到f(x)∈-1,233,再將函數(shù)【題目詳解】(Ⅰ)由圖象知,T∴T=π,ω=2∵2×π6+φ=2kπ,k∈Z,及而f(0)=Asin(-π3故f(x)=2(Ⅱ)∵x∈∴2x-π3∈又函數(shù)y=f(x)2-2f(x)-m∵f(x)∈∴f(x)-1因此,實數(shù)m的取值范圍是-1,3.【題目點撥】本題主要考查由三角函數(shù)的部分圖像求解析式的問題,以及由函數(shù)的零點求參數(shù)的問題,熟記
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年對二甲氨基苯甲酸行業(yè)深度研究分析報告
- 2025年車牌轉(zhuǎn)讓與回收利用合作協(xié)議書4篇
- 二零二五年度木制戶外家具制作木工勞務(wù)承包服務(wù)協(xié)議3篇
- 二零二五年數(shù)字經(jīng)濟企業(yè)獨立董事數(shù)字經(jīng)濟發(fā)展與戰(zhàn)略規(guī)劃合同3篇
- 買賣合作合同完整版3篇
- 2025鉆床加工中心項目承包及工藝流程優(yōu)化合同3篇
- 2025年度智能電網(wǎng)工程轉(zhuǎn)讓協(xié)議書范本2篇
- 2025年度風(fēng)力發(fā)電場基礎(chǔ)沉降觀測合同4篇
- 2025年度航空航天器安裝與性能優(yōu)化合同4篇
- 2025年度建筑工程竣工驗收評價合同招標(biāo)文件3篇
- 2024版塑料購銷合同范本買賣
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 2024年安徽省中考數(shù)學(xué)試卷含答案
- 2025屆山東省德州市物理高三第一學(xué)期期末調(diào)研模擬試題含解析
- 2024年滬教版一年級上學(xué)期語文期末復(fù)習(xí)習(xí)題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學(xué)英語六年級下冊全冊教案
- 汽車噴漆勞務(wù)外包合同范本
- 2024年重慶南開(融僑)中學(xué)中考三模英語試題含答案
- 2023年最新的校長給教師春節(jié)祝福語
評論
0/150
提交評論