![2024屆北京市第十二中數(shù)學(xué)高一第二學(xué)期期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M02/00/12/wKhkGWWkETyAeMD8AAHHlxGZRa8756.jpg)
![2024屆北京市第十二中數(shù)學(xué)高一第二學(xué)期期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M02/00/12/wKhkGWWkETyAeMD8AAHHlxGZRa87562.jpg)
![2024屆北京市第十二中數(shù)學(xué)高一第二學(xué)期期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M02/00/12/wKhkGWWkETyAeMD8AAHHlxGZRa87563.jpg)
![2024屆北京市第十二中數(shù)學(xué)高一第二學(xué)期期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M02/00/12/wKhkGWWkETyAeMD8AAHHlxGZRa87564.jpg)
![2024屆北京市第十二中數(shù)學(xué)高一第二學(xué)期期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M02/00/12/wKhkGWWkETyAeMD8AAHHlxGZRa87565.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆北京市第十二中數(shù)學(xué)高一第二學(xué)期期末聯(lián)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列關(guān)于四棱柱的說法:①四條側(cè)棱互相平行且相等;②兩對相對的側(cè)面互相平行;③側(cè)棱必與底面垂直;④側(cè)面垂直于底面.其中正確結(jié)論的個(gè)數(shù)為()A.1 B.2 C.3 D.42.已知,函數(shù),存在常數(shù),使得為偶函數(shù),則可能的值為()A. B. C. D.3.已知向量,且,則與的夾角為()A. B. C. D.4.已知是奇函數(shù),且.若,則()A.1 B.2 C.3 D.45.已知直線與,若,則()A.2 B.1 C.2或-1 D.-2或16.在中,已知、、分別是角、、的對邊,若,則的形狀為A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形7.若實(shí)數(shù)滿足約束條件,則的最大值為()A.9 B.7 C.6 D.38.如圖,直角的斜邊長為2,,且點(diǎn)分別在軸,軸正半軸上滑動,點(diǎn)在線段的右上方.設(shè),(),記,,分別考察的所有運(yùn)算結(jié)果,則()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值9.已知數(shù)列是公比為2的等比數(shù)列,滿足,設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.34B.39C.51D.6810.中國古代的“禮”“樂”“射”“御”“書”“數(shù)”合稱“六藝”.某校國學(xué)社團(tuán)準(zhǔn)備于周六上午9點(diǎn)分別在6個(gè)教室開展這六門課程講座,每位同學(xué)只能選擇一門課程,則甲乙兩人至少有人選擇“禮”的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.方程的解集是__________.12._______________。13.設(shè)數(shù)列滿足,,,,______.14.某班級有50名學(xué)生,現(xiàn)用系統(tǒng)抽樣的方法從這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編號為1~5號,并按編號順序平均分成10組(1~5號,15.已知向量夾角為,且,則__________.16.已知實(shí)數(shù)滿足條件,則的最大值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列中,,,數(shù)列滿足。(1)求證:數(shù)列為等差數(shù)列。(2)求數(shù)列的通項(xiàng)公式。18.已知函數(shù).(1)求的單調(diào)增區(qū)間;(2)當(dāng)時(shí),求的最大值、最小值.19.在中,角A,B,C的對邊分別為a,b,c,若,.(1)求角A的大??;(2)若,求的周長.20.?dāng)?shù)學(xué)的發(fā)展推動著科技的進(jìn)步,正是基于線性代數(shù)、群論等數(shù)學(xué)知識的極化碼原理的應(yīng)用,華為的5G技術(shù)領(lǐng)先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術(shù)支持據(jù)市場調(diào)研預(yù)測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品分別占比及假設(shè)兩家公司的技術(shù)更新周期一致,且隨著技術(shù)優(yōu)勢的體現(xiàn)每次技術(shù)更新后,上一周期采用G公司技術(shù)的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術(shù),采用H公司技術(shù)的僅有5%轉(zhuǎn)而采用G公司技術(shù)設(shè)第n次技術(shù)更新后,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品占比分別為及,不考慮其它因素的影響.(1)用表示,并求實(shí)數(shù)使是等比數(shù)列;(2)經(jīng)過若干次技術(shù)更新后該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能否達(dá)到75%以上?若能,至少需要經(jīng)過幾次技術(shù)更新;若不能,說明理由?(參考數(shù)據(jù):)21.已知函數(shù).(1)用五點(diǎn)法作出函數(shù)在區(qū)間上的大致圖象(列表、描點(diǎn)、連線);(2)若,,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
根據(jù)棱柱的概念和四棱錐的基本特征,逐項(xiàng)進(jìn)行判定,即可求解,得到答案.【題目詳解】由題意,根據(jù)棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱,側(cè)棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各個(gè)側(cè)面都是平行四邊形,所有的側(cè)棱都平行且相等,①正確;②兩對相對的側(cè)面互相平行,不正確,如下圖:左右側(cè)面不平行.本題題目說的是“四棱柱”不一定是“直四棱柱”,所以,③④不正確,故選A.【題目點(diǎn)撥】本題主要考查了四棱柱的概念及其應(yīng)用,其中解答中熟記棱柱的概念以及四棱錐的基本特征是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.2、C【解題分析】
直接利用三角函數(shù)性質(zhì)的應(yīng)用和函數(shù)的奇偶性的應(yīng)用求出結(jié)果.【題目詳解】解:由函數(shù),存在常數(shù),使得為偶函數(shù),則,由于函數(shù)為偶函數(shù),故,所以,當(dāng)時(shí),.故選:C.【題目點(diǎn)撥】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.3、D【解題分析】
直接由平面向量的數(shù)量積公式,即可得到本題答案.【題目詳解】設(shè)與的夾角為,由,,,所以.故選:D【題目點(diǎn)撥】本題主要考查平面向量的數(shù)量積公式.4、C【解題分析】
根據(jù)題意,由奇函數(shù)的性質(zhì)可得,變形可得:,結(jié)合題意計(jì)算可得的值,進(jìn)而計(jì)算可得答案.【題目詳解】根據(jù)題意,是奇函數(shù),則,變形可得:,則有,即,又由,則,,故選:.【題目點(diǎn)撥】本題考查函數(shù)奇偶性的性質(zhì)以及應(yīng)用,涉及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.5、C【解題分析】
由兩直線平行的等價(jià)條件,即可得到本題答案.【題目詳解】因?yàn)?,所以,解得?故選:C【題目點(diǎn)撥】本題主要考查利用兩直線平行的等價(jià)條件求值.6、D【解題分析】
由,利用正弦定理可得,進(jìn)而可得sin2A=sin2B,由此可得結(jié)論.【題目詳解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形狀是等腰三角形或直角三角形故選D.【題目點(diǎn)撥】判斷三角形形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進(jìn)行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關(guān)系進(jìn)行判斷;(3)根據(jù)余弦定理確定一個(gè)內(nèi)角為鈍角進(jìn)而知其為鈍角三角形.7、A【解題分析】由約束條件作出可行域如圖,聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最大,有最大值為,故選A.【方法點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.8、B【解題分析】
設(shè),用表示出,根據(jù)的取值范圍,利用三角函數(shù)恒等變換化簡,進(jìn)而求得最值的情況.【題目詳解】依題意,所以.設(shè),則,所以,,所以,當(dāng)時(shí),取得最大值為.,所以,所以,當(dāng)時(shí),有最小值為.故選B.【題目點(diǎn)撥】本小題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查三角函數(shù)化簡求值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.9、D【解題分析】由數(shù)列是公比為的等比數(shù)列,且滿足,得,所以,所以,設(shè)數(shù)列的公差為,則,故選D.10、D【解題分析】
甲乙兩人至少有人選擇“禮”的對立事件是甲乙兩人都不選擇“禮”,求出后者的概率即可【題目詳解】由題意,甲和乙不選擇“禮”的概率是,且相互獨(dú)立所以甲乙兩人都不選擇“禮”的概率是所以甲乙兩人至少有人選擇“禮”的概率是故選:D【題目點(diǎn)撥】當(dāng)遇到“至多”“至少”型題目時(shí),一般用間接法求會比較簡單,即先求出此事件的對立事件的概率,然后即可得出原事件的概率.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
令,,將原方程化為關(guān)于的一元二次方程,解出得到,進(jìn)而得出方程的解集.【題目詳解】令,,故原方程可化為,解得或,故而或,即方程的解集是,故答案為.【題目點(diǎn)撥】本題主要考查了指數(shù)方程的解法,轉(zhuǎn)化為一元二次方程是解題的關(guān)鍵,屬于基礎(chǔ)題.12、【解題分析】
本題首先可根據(jù)同角三角函數(shù)關(guān)系式化簡得出,然后根據(jù)兩角差的正弦公式化簡得出,最后根據(jù)二倍角公式以及三角函數(shù)誘導(dǎo)公式即可得出結(jié)果?!绢}目詳解】,故答案為【題目點(diǎn)撥】本題考查根據(jù)三角函數(shù)相關(guān)公式進(jìn)行化簡求值,考查到的公式有、、以及,考查化歸與轉(zhuǎn)化思想,是中檔題。13、8073【解題分析】
對分奇偶討論求解即可【題目詳解】當(dāng)為偶數(shù)時(shí),當(dāng)為奇數(shù)時(shí),故當(dāng)為奇數(shù)時(shí),故故答案為8073【題目點(diǎn)撥】本題考查數(shù)列遞推關(guān)系,考查分析推理能力,對分奇偶討論發(fā)現(xiàn)規(guī)律是解決本題的關(guān)鍵,是難題14、33【解題分析】試題分析:因?yàn)槭菑?0名學(xué)生中抽出10名學(xué)生,組距是5,∵第三組抽取的是13號,∴第七組抽取的為13+4×5=33.考點(diǎn):系統(tǒng)抽樣15、【解題分析】試題分析:的夾角,,,,.考點(diǎn):向量的運(yùn)算.【思路點(diǎn)晴】平面向量的數(shù)量積計(jì)算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運(yùn)算公式,涉及幾何圖形的問題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).16、8【解題分析】
畫出滿足約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【題目詳解】實(shí)數(shù),滿足條件的可行域如下圖所示:將目標(biāo)函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點(diǎn)時(shí)截距最大,,故答案為:8.【題目點(diǎn)撥】本題考查線性規(guī)劃的簡單應(yīng)用,解題關(guān)鍵是明確目標(biāo)函數(shù)的幾何意義.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】
(1)將題目過給已知代入進(jìn)行化簡,結(jié)合的表達(dá)式,可證得為等差數(shù)列;(2)利用(1)的結(jié)論求得的通項(xiàng)公式,代入求得的通項(xiàng)公式.【題目詳解】(1)證明:由題意知,,又,故,又易知,故數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列。(2)由(1)知,所以由,可得,故數(shù)列的通項(xiàng)公式為?!绢}目點(diǎn)撥】本小題第一問考查利用數(shù)列的遞推公式證明數(shù)列為等差數(shù)列,然后利用這個(gè)等差數(shù)列來求另一個(gè)等差數(shù)列的通項(xiàng)公式.在解題過程中,只需要牢牢把握住等差數(shù)列的定義,利用等差數(shù)列的定義來證明.18、(1),(2)【解題分析】
(1)首先利用三角函數(shù)恒等變換將化簡為,再求其單調(diào)增區(qū)間即可.(2)根據(jù),求出,再求的最值即可.【題目詳解】(1),.的單調(diào)增區(qū)間為.(2)因?yàn)?,所?所以.當(dāng)時(shí),,當(dāng)時(shí),.【題目點(diǎn)撥】本題主要考查三角函數(shù)恒等變換的應(yīng)用,同時(shí)考查三角函數(shù)的單調(diào)區(qū)間和最值,熟練掌握三角函數(shù)的公式為解題的關(guān)鍵,屬于中檔題.19、(1);(2)【解題分析】
(1)根據(jù)三角形面積公式,結(jié)合平面向量數(shù)量積定義,分別表示出,聯(lián)立即可求得,進(jìn)而得的值.(2)由,結(jié)合余弦定理即可表示出,由(1)可得.即可聯(lián)立表示出,進(jìn)而求得周長.【題目詳解】(1)因?yàn)?所以,則而,可得,所以即化簡可得所以;(2)因?yàn)?所以由余弦定理可得,即,由(1)知,則,所以,所以的周長為.【題目點(diǎn)撥】本題考查了三角形面積公式的應(yīng)用,余弦定理解三角形,平面向量數(shù)量積的定義及應(yīng)用,屬于中檔題.20、(1),;(2)見解析【解題分析】
(1)根據(jù)題意經(jīng)過次技術(shù)更新后,通過整理得到,構(gòu)造是等比數(shù)列,求出,得證;(2)由(1)可求出通項(xiàng),令,通過相關(guān)計(jì)算即可求出n的最小值,從而得到答案.【題目詳解】(1)由題意,可設(shè)5商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品的占比分別為.易知經(jīng)過次技術(shù)更新后,則,①由①式,可設(shè),對比①式可知.又.從而當(dāng)時(shí),是以為首項(xiàng),為公比的等比數(shù)列.(2)由(1)可知,所以經(jīng)過次技術(shù)更形后,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比.由題意,令,得.故,即至少經(jīng)過6次技術(shù)更新,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能達(dá)到75%以上.【題目點(diǎn)撥】本題主要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 5 We're family (說課稿)-2024-2025學(xué)年外研版(三起)(2024)英語三年級上冊
- 1《學(xué)習(xí)伴我成長》(說課稿)-部編版道德與法治三年級上冊
- Unit 2 Different families Part B Let's talk(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2《用水計(jì)量時(shí)間》說課稿-2024-2025學(xué)年科學(xué)五年級上冊教科版
- 2025產(chǎn)品購銷合同樣書
- 2023九年級數(shù)學(xué)下冊 第25章 投影與視圖25.1 投影第2課時(shí) 正投影說課稿 (新版)滬科版001
- 2025城市民用戶燃?xì)夤こ虒?shí)施合同書范本范文
- 2025婦女發(fā)展監(jiān)測評估項(xiàng)目工程合同管理
- 2025合同模板合伙人利潤分配協(xié)議范本
- 2024-2025學(xué)年高中政治 第3單元 第6課 第1框 源遠(yuǎn)流長的中華文化說課稿 新人教版必修3001
- 2025年上半年中煤科工集團(tuán)北京華宇工程限公司中層干部公開招聘易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 特朗普就職演說全文與核心要點(diǎn)
- 2025年教科版新教材科學(xué)小學(xué)一年級下冊教學(xué)計(jì)劃(含進(jìn)度表)
- 北京市海淀區(qū)2024-2025學(xué)年五年級上冊語文期末試卷(有答案)
- 《中國地方戲曲簡介》課件
- 《亞太經(jīng)合組織》課件
- 2024年高考政治必修三《政治與法治》??疾牧项}考點(diǎn)梳理匯編
- 《會展概述》課件
- 《郴州市總體規(guī)劃》課件
- 【高中物理競賽大全】 競賽3 電磁學(xué) 50題競賽真題強(qiáng)化訓(xùn)練解析版-高考物理備考復(fù)習(xí)重點(diǎn)資料歸納
- 再見2024你好2025展望未來
評論
0/150
提交評論