上海市復旦附中浦東分校2024屆高一數(shù)學第二學期期末復習檢測模擬試題含解析_第1頁
上海市復旦附中浦東分校2024屆高一數(shù)學第二學期期末復習檢測模擬試題含解析_第2頁
上海市復旦附中浦東分校2024屆高一數(shù)學第二學期期末復習檢測模擬試題含解析_第3頁
上海市復旦附中浦東分校2024屆高一數(shù)學第二學期期末復習檢測模擬試題含解析_第4頁
上海市復旦附中浦東分校2024屆高一數(shù)學第二學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市復旦附中浦東分校2024屆高一數(shù)學第二學期期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.2.的內角的對邊分別是,若,,,則()A. B. C. D.3.圓的半徑是,則的圓心角與圓弧圍成的扇形面積是()A. B. C. D.4.已知滿足:,則目標函數(shù)的最大值為()A.6 B.8 C.16 D.45.在中,,,則的最小值是()A.2 B.4 C. D.126.已知甲、乙兩組數(shù)據(jù)用莖葉圖表示如圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的的比值等于A. B. C. D.7.函數(shù)是().A.周期為的偶函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為奇函數(shù)8.設滿足約束條件則的最大值為().A.10 B.8 C.3 D.29.若是等比數(shù)列,下列結論中不正確的是()A.一定是等比數(shù)列; B.一定是等比數(shù)列;C.一定是等比數(shù)列; D.一定是等比數(shù)列10.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或3二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),關于此函數(shù)的說法:①為周期函數(shù);②有對稱軸;③為的對稱中心;④;正確的序號是_________.12.如圖是一個算法流程圖.若輸出的值為4,則輸入的值為______________.13.已知變量之間滿足線性相關關系,且之間的相關數(shù)據(jù)如下表所示:_____.12340.13.1414.等差數(shù)列前項和為,已知,,則_____.15.若是等差數(shù)列,首項,,,則使前項和最大的自然數(shù)是________.16.古希臘數(shù)學家阿波羅尼斯在他的巨著《圓錐曲線論》中有一個著名的幾何問題:在平面上給定兩點,,動點滿足(其中和是正常數(shù),且),則的軌跡是一個圓,這個圓稱之為“阿波羅尼斯圓”,該圓的半徑為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,是函數(shù)的兩個相鄰的零點.(1)求;(2)若對任意,都有,求實數(shù)的取值范圍.(3)若關于的方程在上有兩個不同的解,求實數(shù)的取值范圍.18.如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形,由對稱性,圖中8個三角形都是全等的三角形,設.(1)試用表示的面積;(2)求八角形所覆蓋面積的最大值,并指出此時的大小.19.如圖.在四棱錐中,,,平面ABCD,且.,,M、N分別為棱PC,PB的中點.(1)證明:A,D,M,N四點共面,且平面ADMN;(2)求直線BD與平面ADMN所成角的正弦值.20.已知在四棱錐中,底面是矩形,平面,,分別是,的中點,與平面所成的角的正切值是;(1)求證:平面;(2)求二面角的正切值.21.某公司為了提高職工的健身意識,鼓勵大家加入健步運動,要求200名職工每天晚上9:30上傳手機計步截圖,對于步數(shù)超過10000的予以獎勵.圖1為甲乙兩名職工在某一星期內的運動步數(shù)統(tǒng)計圖,圖2為根據(jù)這星期內某一天全體職工的運動步數(shù)做出的頻率分布直方圖.(1)在這一周內任選兩天檢查,求甲乙兩人兩天全部獲獎的概率;(2)請根據(jù)頻率分布直方圖,求出該天運動步數(shù)不少于15000的人數(shù),并估計全體職工在該天的平均步數(shù);(3)如果當天甲的排名為第130名,乙的排名為第40名,試判斷做出的是星期幾的頻率分布直方圖.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數(shù)形結合可得結果.【題目詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【題目點撥】本題主要考查直線的斜率、直線與圓的位置關系以及數(shù)形結合思想的應用,屬于綜合題.數(shù)形結合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數(shù)形結合的思想方法能夠使問題化難為簡,并迎刃而解.2、B【解題分析】,所以,整理得求得或若,則三角形為等腰三角形,不滿足內角和定理,排除.【考點定位】本題考查正弦定理和余弦定理的應用,考查運算能力和分類討論思想.當求出后,要及時判斷出,便于三角形的初步定型,也為排除提供了依據(jù).如果選擇支中同時給出了或,會增大出錯率.3、C【解題分析】

先將化為弧度數(shù),再利用扇形面積計算公式即可得出.【題目詳解】所以扇形的面積為:故選:C【題目點撥】題考查了扇形面積計算公式,考查了推理能力與計算能力,屬于基礎題.4、D【解題分析】

作出不等式組對應的平面區(qū)域,數(shù)形結合,利用z的幾何意義,即得?!绢}目詳解】由題得,不等式組對應的平面區(qū)域如圖,中z表示函數(shù)在y軸的截距,由圖易得,當函數(shù)經過點A時z取到最大值,A點坐標為,因此目標函數(shù)的最大值為4.故選:D【題目點撥】本題考查線性規(guī)劃,是基礎題。5、C【解題分析】

根據(jù),,得到,,平方計算得到最小值.【題目詳解】故答案為C【題目點撥】本題考查了向量的模,向量運算,均值不等式,意在考查學生的計算能力.6、A【解題分析】

從莖葉圖提取甲、乙兩組數(shù)據(jù)中的原始數(shù)據(jù),并按從小到大排列,分別得到中位數(shù),并計算各自的平均數(shù),再根據(jù)中位數(shù)、平均值相等得到關于的方程.【題目詳解】甲組數(shù)據(jù):,中位數(shù)為,乙組數(shù)據(jù):,中位數(shù)為:,所以,所以,故選A.【題目點撥】本題考查中位數(shù)、平均數(shù)的概念與計算,對甲組數(shù)據(jù)排序時,一定是最大,乙組數(shù)據(jù)中一定是最小.7、B【解題分析】因,故是奇函數(shù),且最小正周期是,即,應選答案B.點睛:解答本題時充分運用題設條件,先借助二倍角的余弦公式的變形,將函數(shù)的形式進行化簡,然后再驗證函數(shù)的奇偶性與周期性,從而獲得問題的答案.8、B【解題分析】

作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)即可求解.【題目詳解】作出可行域如圖:化目標函數(shù)為,聯(lián)立,解得.由圖象可知,當直線過點A時,直線在y軸上截距最小,有最大值.【題目點撥】本題主要考查了簡單的線性規(guī)劃,數(shù)形結合的思想,屬于中檔題.9、C【解題分析】

判斷等比數(shù)列,可根據(jù)為常數(shù)來判斷.【題目詳解】設等比數(shù)列的公比為,則對A:為常數(shù),故一定是等比數(shù)列;對B:為常數(shù),故一定是等比數(shù)列;對C:當時,,此時為每項均為0的常數(shù)列;對D:為常數(shù),故一定是等比數(shù)列.故選:C.【題目點撥】本題主要考查等比數(shù)列的判定,若數(shù)列的后項除以前一項為常數(shù),則該數(shù)列為等比數(shù)列.本題選項C容易忽略時這種情況.10、D【解題分析】

根據(jù)直線的平行關系,列方程解參數(shù)即可.【題目詳解】由題:直線與直線互相平行,所以,,解得:或.經檢驗,當或時,兩條直線均平行.故選:D【題目點撥】此題考查根據(jù)直線平行關系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④【解題分析】

由三角函數(shù)的性質及,分別對各選項進行驗證,即可得出結論.【題目詳解】解:由函數(shù),可得①,可得為周期函數(shù),故①正確;②由,,故,是偶函數(shù),故有對稱軸正確,故②正確;③為偶數(shù)時,,為奇數(shù)時,故不為的對稱中心,故③不正確;④由,可得正確,故④正確.故答案為:①②④.【題目點撥】本題主要考查三角函數(shù)的值域、周期性、對稱性等相關知識,綜合性大,屬于中檔題.12、-1【解題分析】

對的范圍分類,利用流程圖列方程即可得解.【題目詳解】當時,由流程圖得:令,解得:,滿足題意.當時,由流程圖得:令,解得:,不滿足題意.故輸入的值為:【題目點撥】本題主要考查了流程圖知識,考查分類思想及方程思想,屬于基礎題.13、【解題分析】

根據(jù)回歸直線方程過樣本點的中心,代入數(shù)據(jù)即可計算出的值.【題目詳解】因為,,所以,解得.故答案為:.【題目點撥】本題考查根據(jù)回歸直線方程過樣本點的中心求參數(shù),難度較易.14、1【解題分析】

首先根據(jù)、即可求出和,從而求出。【題目詳解】,①,②①②得,,即,∴,即,∴,故答案為:1.【題目點撥】本題主要考查了解方程,以及等差數(shù)列的性質和前項和。其中等差數(shù)列的性質:若則比較??迹枥斫庹莆?。15、【解題分析】

由已知條件推導出,,由此能求出使前項和成立的最大自然數(shù)的值.【題目詳解】解:等差數(shù)列,首項,,,,.如若不然,,則,而,得,矛盾,故不可能.使前項和成立的最大自然數(shù)為.故答案為:.【題目點撥】本題考查等差數(shù)列的前項和取最大值時的值的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的通項公式的合理運用.16、【解題分析】

設,由動點滿足(其中和是正常數(shù),且),可得,化簡整理可得.【題目詳解】設,由動點滿足(其中和是正常數(shù),且),所以,化簡得,即,所以該圓半徑故該圓的半徑為.【題目點撥】本題考查圓方程的標準形式和兩點距離公式,難點主要在于計算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解題分析】

(1)先化簡,再根據(jù)函數(shù)的周期求出的值,從而得到的解析式;(2)將問題轉化為,根據(jù)三角函數(shù)的性質求出的最大值,即可求出實數(shù)的取值范圍;(3)通過方程的解與函數(shù)圖象之間的交點關系,可將題意轉化為函數(shù)的圖象與直線有兩個交點,即可由圖象求出實數(shù)的取值范圍.【題目詳解】(1).由題意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化為即,由,得時,,的最大值為2,∴要使方程在上有兩個不同的解,即函數(shù)的圖象與直線有兩個交點,由圖象可知,即,所以【題目點撥】本題主要考查三角函數(shù)的圖象與性質的應用,以及利用二倍角公式、兩角差的余弦公式、兩角和的正弦公式進行三角恒等變換,同時還考查了轉化與化歸思想,數(shù)形結合思想的應用.18、(1),.(2)時,達到最大此時八角形所覆蓋面積前最大值為.【解題分析】

(1)注意到,從而的周長為,故,所以,注意.(2)令,則,根據(jù)可求最大值.【題目詳解】(1)設為,,,,,(2)令,只需考慮取到最大值的情況,即為,當,即時,達到最大,此時八角形所覆蓋面積為16+4最大值為.【題目點撥】如果三角函數(shù)式中僅含有和,則可令后利用把三角函數(shù)式變成關于的函數(shù),注意換元后的范圍.19、(1)證明見解析;(2)【解題分析】

(1)先證,再證,即可得證;要證平面ADMN,可通過求證PB垂直于ADMN中的兩條交線來證明(2)求直線BD與平面ADMN所成角,需要找出BD在平面ADMN的射影,可通過三垂線定理去進行證明【題目詳解】解:(1)證明因為M,N分別為PC,PB的中點,所以;又因為,所以.從而A,D,M,N四點共面;因為平面ABCD,平面ABCD.所以,又因為,,所以平面PAB,從而,因為,且N為PB的中點,所以;又因為,所以平面ADMN;(2)如圖,連結DN;由(1)知平面ADMN,所以,DN為直線BD在平面ADMN內的射影,且,所以,即為直線BD與平面ADMN所成的角:在直角梯形ABCD內,過C作于H,則四邊形ABCH為矩形;,在中,;所以,,,在中,,,,所以.綜上,直線BD與平面ADMN所成角的正弦值為.【題目點撥】本題考查了線面垂直的判定定理,考查了線面角的求解方法,考查了運算能力及空間想象能力,屬于中檔題.20、(1)見證明;(2)【解題分析】

(1)取的中點,連接,通過證明四邊形是平行四邊形,證得,從而證得平面.(2)連接,證得為與平面所成角.根據(jù)的值求得的長,作出二面角的平面角并證明,解直角三角形求得二面角的正切值.【題目詳解】(1)證明:取的中點,連接.∵是中點∴又是的中點,∴∴,從而四邊形是平行四邊形,故又平面,平面,∴(2)∵平面,∴是在平面內的射影為與平面所成角,四邊形為矩形,∵,∴,∴過點作交的延長線于,連接,∵平面據(jù)三垂線定理知.∴是二面角的平面角易知道為等腰直角三角形,∴∴=∴二面角的正切值為【題目點撥】本小題主要考查線面平行的證明,考查線面角的定義和應用,考查面面角的正切值的求法,考查邏輯推理能力和空間想象能力,屬于中檔題.21、(1),(2)80人,13.25千步,(3)星期二【解題分析】

(1)根據(jù)統(tǒng)計圖統(tǒng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論