版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆陜西省咸陽市涇陽縣數(shù)學(xué)高一下期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某班由50個編號為01,02,03,…50的學(xué)生組成,現(xiàn)在要選取8名學(xué)生參加合唱團,選取方法是從隨機數(shù)表的第1行的第11列開始由左到右依次選取兩個數(shù)字,則該樣本中選出的第8名同學(xué)的編號為()495443548217379323783035209623842634916450258392120676572355068877047447672176335025839212067649544354827447A.20 B.25 C.26 D.342.已知冪函數(shù)過點,令,,記數(shù)列的前項和為,則時,的值是()A.10 B.120 C.130 D.1403.已知函數(shù)的最大值是2,則的值為()A. B. C. D.4.《九章算術(shù)》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一.”就是說:圓堡瑽(圓柱體)的體積為:V=×(底面的圓周長的平方×高).則由此可推得圓周率的取值為()A.3 B.3.14 C.3.2 D.3.35.設(shè)、滿足約束條件,則的最大值為()A. B.C. D.6.已知,則的值構(gòu)成的集合為()A. B. C. D.7.若變量滿足約束條件則的最大值為()A.4 B.3 C.2 D.18.執(zhí)行下邊的程序框圖,如果輸出的值為1,則輸入的值為()A.0 B. C.0或 D.0或19.甲、乙兩人在相同的條件下各打靶6次,每次打靶的情況如圖所示(虛線為甲的折線圖),則以下說法錯誤的是()A.甲、乙兩人打靶的平均環(huán)數(shù)相等B.甲的環(huán)數(shù)的中位數(shù)比乙的大C.甲的環(huán)數(shù)的眾數(shù)比乙的大D.甲打靶的成績比乙的更穩(wěn)定10.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內(nèi)隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線:與直線:平行,則______.12.的值為__________.13.在正項等比數(shù)列中,,,則公比________.14.若各項均為正數(shù)的等比數(shù)列,,則它的前項和為______.15.如圖,曲線上的點與軸的正半軸上的點及原點構(gòu)成一系列正三角形,,,設(shè)正三角形的邊長為(記為),.數(shù)列的通項公式=______.16.有一個底面半徑為2,高為2的圓柱,點,分別為這個圓柱上底面和下底面的圓心,在這個圓柱內(nèi)隨機取一點P,則點P到點或的距離不大于1的概率是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在國內(nèi)汽車市場中,國產(chǎn)SUV出現(xiàn)了持續(xù)不退的銷售熱潮,2018年國產(chǎn)SUV銷量排行榜完整版已經(jīng)出爐,某品牌車型以驚人的銷量成績擊退了所有虎視眈眈的對手,再次霸氣登頂,下面是該品牌國產(chǎn)SUV分別在2017年與2018年7~11月份的銷售量對比表時間7月8月9月10月11月2017年(單位:萬輛)2.83.93.54.45.42018年(單位:萬輛)3.83.94.54.95.4(Ⅰ)若從7月至11月中任選兩個月份,求至少有一個月份這兩年該國產(chǎn)品牌SUV銷量相同的概率.(Ⅱ)分別求這兩年7月至11月的銷售數(shù)據(jù)的平均數(shù),并直接判斷哪年的銷售量比較穩(wěn)定.18.為了了解四川省各景點在大眾中的熟知度,隨機對歲的人群抽樣了人,回答問題“四川省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如表.組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第,,組回答正確的人中用分層抽樣的方法抽取人,求第,,組每組各抽取多少人?(3)通過直方圖求出年齡的眾數(shù),平均數(shù).19.某大學(xué)要修建一個面積為的長方形景觀水池,并且在景觀水池四周要修建出寬為2m和3m的小路如圖所示問如何設(shè)計景觀水池的邊長,能使總占地面積最?。坎⑶蟪隹傉嫉孛娣e的最小值.20.已知的外接圓的半徑為,內(nèi)角,,的對邊分別為,,,又向量,,且.(1)求角;(2)求三角形的面積的最大值并求此時的周長.21.在中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知.(1)求角B的大??;(2)設(shè)a=2,c=3,求b和的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
利用隨機數(shù)表依次選出8名學(xué)生的二位數(shù)的編號,超出范圍的、重復(fù)的要舍去.【題目詳解】從隨機數(shù)表的第1行的第11列開始由左到右依次選取兩個數(shù)字,選出來的8名學(xué)生的編號分別為:17,37,(93舍去)23,(78舍去)30,35,20,(96舍去)(23舍去)(84舍去)26,1;∴樣本選出來的第8名同學(xué)的編號為1.故選:D【題目點撥】本題考查了利用隨機數(shù)表法求抽樣編號的問題,屬于基礎(chǔ)題.2、B【解題分析】
根據(jù)冪函數(shù)所過點求得冪函數(shù)解析式,由此求得的表達(dá)式,利用裂項求和法求得的表達(dá)式,解方程求得的值.【題目詳解】設(shè)冪函數(shù)為,將代入得,所以.所以,所以,故,由解得,故選B.【題目點撥】本小題主要考查冪函數(shù)解析式的求法,考查裂項求和法,考查方程的思想,屬于基礎(chǔ)題.3、B【解題分析】
根據(jù)誘導(dǎo)公式以及兩角和差的正余弦公式化簡,根據(jù)輔助角公式結(jié)合范圍求最值取得的條件即可得解.【題目詳解】由題函數(shù),最大值是2,所以,平方處理得:,所以,,所以.故選:B【題目點撥】此題考查根據(jù)三角函數(shù)的最值求參數(shù)的取值,考查對三角恒等變換的綜合應(yīng)用.4、A【解題分析】試題分析:由題意知圓柱體積×(底面的圓周長的平方×高),化簡得:,故選A.考點:圓柱的體積公式.5、C【解題分析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應(yīng)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出結(jié)果.【題目詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點的坐標(biāo)為.平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,直線在軸上的截距最大,此時取最大值,即,故選:C.【題目點撥】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值來取得,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.6、B【解題分析】
根據(jù)的奇偶分類討論.【題目詳解】為偶數(shù)時,,為奇數(shù)時,設(shè),則.∴的值構(gòu)成的集合是.故選:B.【題目點撥】本題考查誘導(dǎo)公式,掌握誘導(dǎo)公式是解題基礎(chǔ).注意誘導(dǎo)公式的十字口訣:奇變偶不變,符號看象限.7、B【解題分析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【題目詳解】作出約束條件,所對應(yīng)的可行域(如圖陰影部分)變形目標(biāo)函數(shù)可得,平移直線可知,當(dāng)直線經(jīng)過點時,直線的截距最小,代值計算可得取最大值故選B.【點晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.8、C【解題分析】
根據(jù)程序框圖,轉(zhuǎn)化為條件函數(shù)進(jìn)行計算即可.【題目詳解】程序?qū)?yīng)的函數(shù)為y,若x≤0,由y=1得ex=1,得x=0,滿足條件.若x>0,由y=2﹣lnx=1,得lnx=1,即x=e,滿足條件.綜上x=0或e,故選C.【題目點撥】本題主要考查程序框圖的識別和應(yīng)用,根據(jù)條件轉(zhuǎn)化為分段函數(shù)是解決本題的關(guān)鍵.9、C【解題分析】甲:8,6,8,6,9,8,平均數(shù)為7.5,中位數(shù)為8,眾數(shù)為8;乙:4,6,8,7,10,10,平均數(shù)為7.5,中位數(shù)7.5,眾數(shù)為10;所以可知錯誤的是C。故選C。10、A【解題分析】試題分析:設(shè)扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應(yīng)為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經(jīng)分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應(yīng)注意切割分解,“多還少補”.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解題分析】
利用直線平行公式得到答案.【題目詳解】直線:與直線:平行故答案為4【題目點撥】本題考查了直線平行的性質(zhì),屬于基礎(chǔ)題型.12、【解題分析】
直接利用誘導(dǎo)公式化簡求值.【題目詳解】,故答案為:.【題目點撥】本題考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.13、【解題分析】
利用等比中項可求出,再由可求出公比.【題目詳解】因為,,所以,,解得.【題目點撥】本題考查了等比數(shù)列的性質(zhì),考查了計算能力,屬于基礎(chǔ)題.14、【解題分析】
利用等比數(shù)列的通項公式求出公比,由此能求出它的前項和.【題目詳解】設(shè)各項均為正數(shù)的等比數(shù)列的公比為,由,得,且,解得,它的前項和為.故答案:.【題目點撥】本題考查等比數(shù)列的前項和的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.15、【解題分析】
先得出直線的方程為,與曲線的方程聯(lián)立得出的坐標(biāo),可得出,并設(shè),根據(jù)題中條件找出數(shù)列的遞推關(guān)系式,結(jié)合遞推關(guān)系式選擇作差法求出數(shù)列的通項公式,即利用求出數(shù)列的通項公式?!绢}目詳解】設(shè)數(shù)列的前項和為,則點的坐標(biāo)為,易知直線的方程為,與曲線的方程聯(lián)立,解得,;當(dāng)時,點、,所以,點,直線的斜率為,則,即,等式兩邊平方并整理得,可得,以上兩式相減得,即,易知,所以,即,所以,數(shù)列是等差數(shù)列,且首項為,公差也為,因此,.故答案為:?!绢}目點撥】本題考查數(shù)列通項的求解,根據(jù)已知條件找出數(shù)列的遞推關(guān)系是解題的關(guān)鍵,在求通項公式時需結(jié)合遞推公式的結(jié)構(gòu)選擇合適的方法求解數(shù)列的通項公式,考查分析問題的能力,屬于難題。16、【解題分析】
本題利用幾何概型求解.先根據(jù)到點的距離等于1的點構(gòu)成圖象特征,求出其體積,最后利用體積比即可得點到點,的距離不大于1的概率;【題目詳解】解:由題意可知,點P到點或的距離都不大于1的點組成的集合分別以、為球心,1為半徑的兩個半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【題目點撥】本題主要考查幾何概型、圓柱和球的體積等基礎(chǔ)知識,考查運算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.關(guān)鍵是明確滿足題意的測度為體積比.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ),,年銷售量更穩(wěn)定.【解題分析】
(Ⅰ)列舉出所有可能的情況,在其中找到至少一個月份兩年銷量相同的情況,根據(jù)古典概型概率公式求得結(jié)果;(Ⅱ)根據(jù)平均數(shù)和方差的計算公式分別計算出兩年銷量的平均數(shù)與方差;由可得結(jié)論.【題目詳解】(Ⅰ)從月至月中任選兩個月份,記為,所有可能的結(jié)果為:,,,,,,,,,,共種情況記事件為“至少有一個月份這兩年國產(chǎn)品牌銷量相同”,則有:,,,,,,,共種情況,即至少有一個月份這兩年國產(chǎn)品牌銷量相同的概率為(Ⅱ)年銷售數(shù)據(jù)平均數(shù)為:方差年銷售數(shù)據(jù)平均數(shù)為:方差年的銷售量更穩(wěn)定【題目點撥】本題考查古典概型概率問題的求解、計算數(shù)據(jù)的平均數(shù)、利用方差評估數(shù)據(jù)的穩(wěn)定性的問題;處理古典概型問題的關(guān)鍵是通過列舉的方式得到所有基本事件個數(shù)和滿足題意的基本事件個數(shù),從而利用公式求得結(jié)果.18、(1);(2)第組抽取人,第組抽取人,第組抽取人;(3)40,.【解題分析】
(1)由頻率分布表得第四組人數(shù)為25人,由頻率分布直方圖得第四組的頻率為0.25,從而求出.由此求出各組人數(shù),進(jìn)而能求出,,,的值.(2)由第2,3,4組回答正確的人分別有18、27、9人,從中用分層抽樣的方法抽取6人,由此能求出第2,3,4組每組各抽取多少人.(3)由頻率分布直方圖能求出年齡的眾數(shù),平均數(shù).【題目詳解】(1)由頻率分布表得第四組人數(shù)為:人,由頻率分布直方圖得第四組的頻率為,.第一組抽取的人數(shù)為:人,第二組抽取的人數(shù)為:人,第三組抽取的人數(shù)為:人,第五組抽取的人數(shù)為:人,.(2)第,,組回答正確的人分別有、、人,從中用分層抽樣的方法抽取人,第組抽?。喝?,第組抽?。喝?,第組抽?。喝耍?)由頻率分布直方圖得:年齡的眾數(shù)為:,年齡的平均數(shù)為:【題目點撥】本題考查頻率、頻數(shù)、眾數(shù)、平均數(shù)的求法,考查分層抽樣的應(yīng)用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運用.19、水池一邊長為12m,另一邊為18m,總面積為最小,為.【解題分析】
設(shè)水池一邊長為xm,則另一邊為,表示出面積利用基本不等式求解即可.【題目詳解】設(shè)水池一邊長為xm,則另
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2visio2024教程:圖形界面全探索
- 2024年教案革新:《上學(xué)歌》設(shè)計理念與實踐
- 《接觸網(wǎng)施工》課件 4.9.2 電連接線壓接
- 2024年教育革新:《生理學(xué)》電子教案在醫(yī)學(xué)教育中的應(yīng)用
- 2024年全新策劃:列夫·托爾斯泰的7個維度
- 《拿來主義》課堂實踐案例匯編2024
- 第45屆世賽全國選拔賽初步技術(shù)思路(烘焙項目)
- 2024年教育創(chuàng)新:《圓柱的認(rèn)識》課件實踐與探索
- 2024年物流行業(yè):《最佳路徑》課件提高貨車運輸效率
- 靜音木門廠賬務(wù)處理-記賬實操
- 材料力學(xué)課程導(dǎo)學(xué)與考研指導(dǎo)
- 小學(xué)各年級小學(xué)一年級提高思維能力的方法主題班會
- 宣傳欄安裝施工方案
- 張曉風(fēng)散文自選集
- 膽囊息肉的護理查房
- 新課標(biāo)下小學(xué)生運算能力的培養(yǎng)研究的開題報告
- 餐飲行業(yè)初期投資預(yù)算分析
- 遼寧省重點高中沈陽市郊聯(lián)體2023-2024學(xué)年高三上學(xué)期期中生物試題(解析版)
- 退費申請表模板(直接打?。?/a>
- 剪映:手機短視頻制作-配套課件
- 西氣東輸二線25標(biāo)段山嶺隧道內(nèi)管道安裝技術(shù)
評論
0/150
提交評論