2024屆廣東省廣州市華南師大附屬中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第1頁(yè)
2024屆廣東省廣州市華南師大附屬中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第2頁(yè)
2024屆廣東省廣州市華南師大附屬中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第3頁(yè)
2024屆廣東省廣州市華南師大附屬中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第4頁(yè)
2024屆廣東省廣州市華南師大附屬中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆廣東省廣州市華南師大附屬中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,,若,,則的最大值為()A. B. C.4 D.52.為三角形ABC的一個(gè)內(nèi)角,若,則這個(gè)三角形的形狀為()A.銳角三角形 B.鈍角三角形C.等腰直角三角形 D.等腰三角形3.若向量,,則在方向上的投影為()A.-2 B.2 C. D.4.已知函數(shù),下列結(jié)論錯(cuò)誤的是()A.既不是奇函數(shù)也不是偶函數(shù) B.在上恰有一個(gè)零點(diǎn)C.是周期函數(shù) D.在上是增函數(shù)5.已知冪函數(shù)過(guò)點(diǎn),令,,記數(shù)列的前項(xiàng)和為,則時(shí),的值是()A.10 B.120 C.130 D.1406.已知在角終邊上,若,則()A. B.-2 C.2 D.7.已知x,y∈R,且x>y>0,則()A. B.C. D.lnx+lny>08.在中,點(diǎn)滿足,則()A. B.C. D.9.某校有高一學(xué)生人,高二學(xué)生人,高三學(xué)生人,現(xiàn)教育局督導(dǎo)組欲用分層抽樣的方法抽取名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則下列判斷正確的是()A.高一學(xué)生被抽到的可能性最大 B.高二學(xué)生被抽到的可能性最大C.高三學(xué)生被抽到的可能性最大 D.每位學(xué)生被抽到的可能性相等10.已知三個(gè)內(nèi)角、、的對(duì)邊分別是,若,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系xOy中,雙曲線的右支與焦點(diǎn)為F的拋物線交于A,B兩點(diǎn)若,則該雙曲線的漸近線方程為________.12.已知向量,,且,則的值為________.13.等比數(shù)列{an}中,a1<0,{an}是遞增數(shù)列,則滿足條件的q的取值范圍是______________.14.的值為________.15.某單位為了了解用電量度與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某天的用電量與當(dāng)天氣溫.氣溫(℃)141286用電量(度)22263438由表中數(shù)據(jù)得回歸直線方程中,據(jù)此預(yù)測(cè)當(dāng)氣溫為5℃時(shí),用電量的度數(shù)約為____.16.在銳角△中,角所對(duì)應(yīng)的邊分別為,若,則角等于________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角所對(duì)的邊分別為.(1)若,求角的大?。唬?)若是邊上的中線,求證:.18.如圖,在平行四邊形中,,,,與的夾角為.(1)若,求、的值;(2)求的值;(3)求與的夾角的余弦值.19.已知四棱錐的底面ABCD是菱形,平面ABCD,,,F(xiàn),G分別為PD,BC中點(diǎn),.(Ⅰ)求證:平面PAB;(Ⅱ)求三棱錐的體積;(Ⅲ)求證:OP與AB不垂直.20.如圖,在以、、、、、為頂點(diǎn)的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.21.記Sn為等差數(shù)列an的前n項(xiàng)和,已知(1)求an(2)求Sn,并求S

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】

設(shè),由可得點(diǎn)的軌跡方程,再對(duì)兩邊平方,利用一元二次函數(shù)的性質(zhì)求出最大值,即可得答案.【題目詳解】設(shè),,∵,∴,整理得:.∵,∴,當(dāng)時(shí),的最大值為,∴的最大值為.故選:A.【題目點(diǎn)撥】本題考查向量模的最值、模的坐標(biāo)運(yùn)算、一元二次函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意坐標(biāo)法的運(yùn)用.2、B【解題分析】試題分析:由,兩邊平方得,即,又,則,所以為第三、四象限角或軸負(fù)半軸上的角,所以為鈍角.故正確答案為B.考點(diǎn):1.三角函數(shù)的符號(hào)、平方關(guān)系;2.三角形內(nèi)角.3、A【解題分析】向量,,所以,||=5,所以在方向上的投影為=-2故選A4、B【解題分析】

將函數(shù)利用同角三角函數(shù)的基本關(guān)系,化成,再對(duì)選項(xiàng)進(jìn)行一一驗(yàn)證,即可得答案.【題目詳解】∵,對(duì)A,∵,∴既不是奇函數(shù)也不是偶函數(shù),故A命題正確;對(duì)B,令,解關(guān)于的一元二次方程得:,∵,∴方程存在兩個(gè)根,∴在上有兩個(gè)零點(diǎn),故B錯(cuò)誤;對(duì)C,顯然是函數(shù)的一個(gè)周期,故C正確;對(duì)D,令,則,∵在單調(diào)遞減,且,又∵在單調(diào)遞減,∴在上是增函數(shù),故D正確;故選:B【題目點(diǎn)撥】本題考查復(fù)合函數(shù)的單調(diào)性、奇偶性、周期性、零點(diǎn),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意復(fù)合函數(shù)周增異減原則.5、B【解題分析】

根據(jù)冪函數(shù)所過(guò)點(diǎn)求得冪函數(shù)解析式,由此求得的表達(dá)式,利用裂項(xiàng)求和法求得的表達(dá)式,解方程求得的值.【題目詳解】設(shè)冪函數(shù)為,將代入得,所以.所以,所以,故,由解得,故選B.【題目點(diǎn)撥】本小題主要考查冪函數(shù)解析式的求法,考查裂項(xiàng)求和法,考查方程的思想,屬于基礎(chǔ)題.6、C【解題分析】

由正弦函數(shù)的定義求解.【題目詳解】,顯然,∴.故選C.【題目點(diǎn)撥】本題考查正弦函數(shù)的定義,屬于基礎(chǔ)題.解題時(shí)注意的符號(hào).7、A【解題分析】

結(jié)合選項(xiàng)逐個(gè)分析,可選出答案.【題目詳解】結(jié)合x,y∈R,且x>y>0,對(duì)選項(xiàng)逐個(gè)分析:對(duì)于選項(xiàng)A,,,故A正確;對(duì)于選項(xiàng)B,取,,則,故B不正確;對(duì)于選項(xiàng)C,,故C錯(cuò)誤;對(duì)于選項(xiàng)D,,當(dāng)時(shí),,故D不正確.故選A.【題目點(diǎn)撥】本題考查了不等式的性質(zhì),屬于基礎(chǔ)題.8、D【解題分析】

因?yàn)?,所以,即;故選D.9、D【解題分析】

根據(jù)分層抽樣是等可能的選出正確答案.【題目詳解】由于分層抽樣是等可能的,所以每位學(xué)生被抽到的可能性相等,故選D.【題目點(diǎn)撥】本小題主要考查隨機(jī)抽樣的公平性,考查分層抽樣的知識(shí),屬于基礎(chǔ)題.10、D【解題分析】

根據(jù)正弦定理把邊化為對(duì)角的正弦求解.【題目詳解】【題目點(diǎn)撥】本題考查正弦定理,邊角互換是正弦定理的重要應(yīng)用,注意增根的排除.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)題意到,聯(lián)立方程得到,得到答案.【題目詳解】,故.,故,故,故.故雙曲線漸近線方程為:.故答案為:.【題目點(diǎn)撥】本題考查了雙曲線的漸近線問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.12、【解題分析】

利用共線向量的坐標(biāo)表示求出的值,可計(jì)算出向量的坐標(biāo),然后利用向量的模長(zhǎng)公式可求出的值.【題目詳解】,,且,,解得,,則,因此,,故答案為:.【題目點(diǎn)撥】本題考查利用共線向量的坐標(biāo)表示求參數(shù),同時(shí)也考查了向量模的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.13、【解題分析】試題分析:由題意可得,∴,解得0<q<1考點(diǎn):等比數(shù)列的性質(zhì)14、【解題分析】

利用同角三角函數(shù)的基本關(guān)系式、二倍角公式,結(jié)合根式運(yùn)算,化簡(jiǎn)求得表達(dá)式的值.【題目詳解】依題意,由于,所以故答案為:【題目點(diǎn)撥】本小題主要考查同角三角函數(shù)的基本關(guān)系式、二倍角公式,考查根式運(yùn)算,屬于基礎(chǔ)題.15、1【解題分析】

由表格得,即樣本中心點(diǎn)的坐標(biāo)為,又因?yàn)闃颖局行狞c(diǎn)在回歸方程上且,解得:,當(dāng)時(shí),,故答案為1.考點(diǎn):回歸方程【名師點(diǎn)睛】本題考查線性回歸方程,屬容易題.兩個(gè)變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過(guò)建立回歸直線方程,就可以根據(jù)其部分觀測(cè)值,獲得對(duì)這兩個(gè)變量之間整體關(guān)系的了解.解題時(shí)根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)樣本中心點(diǎn)在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個(gè)確定的方程,根據(jù)所給的的值,代入線性回歸方程,預(yù)報(bào)要銷售的件數(shù).16、【解題分析】試題分析:利用正弦定理化簡(jiǎn),得,因?yàn)?,所以,因?yàn)闉殇J角,所以.考點(diǎn):正弦定理的應(yīng)用.【方法點(diǎn)晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問(wèn)題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問(wèn)題和解答問(wèn)題的能力,同時(shí)注意條件中銳角三角形,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見解析【解題分析】

(1)已知三邊的關(guān)系且有平方,考慮化簡(jiǎn)式子構(gòu)成余弦定理即可。(2)觀察結(jié)論形似余弦定理,通過(guò),則互補(bǔ),則余弦值互為相反數(shù)聯(lián)系。【題目詳解】(1)∵,∴∴由余弦定理,得,∴∵,∴,∵,∴(2)設(shè),,則在中,由余弦定理,得在中,同理,得∵,∴,∵,∴,∴【題目點(diǎn)撥】解三角形要注意觀察題干條件所給的形式,出現(xiàn)邊長(zhǎng)平方一般會(huì)考慮用到余弦定理。正弦定理和余弦定理是我們解三角形的兩大常用工具,需要熟練運(yùn)用。18、(1),;(2);(3).【解題分析】試題分析:(1)根據(jù)向量的運(yùn)算有,可知,由模長(zhǎng)即可求得、的值;(2)先求得向量,再根據(jù)向量的數(shù)量積及便可求得;(3)由前面的求解可得及,可利用求得向量夾角的余弦值.試題解析:(1)因?yàn)?,所以?(2)由向量的運(yùn)算法則知,,所以.(3)因?yàn)榕c的夾角為,所以與的夾角為,又,所以..設(shè)與的夾角為,可得.所以與的夾角的余弦值為.考點(diǎn):向量的運(yùn)算.【思路點(diǎn)睛】本題主要考查向量的運(yùn)算及單位向量,平面任一向量都可用兩個(gè)不共線的單位向量來(lái)表示,其對(duì)應(yīng)坐標(biāo)就是沿單位向量方向上向量的模長(zhǎng);而對(duì)于向量的數(shù)量積,在得知模長(zhǎng)及夾角的情況下,可以用兩向量模長(zhǎng)與夾角余弦三者的乘積來(lái)計(jì)算,也可轉(zhuǎn)化為單位向量的數(shù)量積進(jìn)行求解;而向量夾角的余弦值則經(jīng)常通過(guò)向量的數(shù)量積與向量模長(zhǎng)的比值來(lái)求得.19、(Ⅰ)見解析(Ⅱ)(Ⅲ)見解析【解題分析】

(Ⅰ)連接,,由已知結(jié)合三角形中位線定理可得平面,再由面面平行的判斷可得平面平面,進(jìn)而可得平面;(Ⅱ)首先證明平面,而為的中點(diǎn),然后利用等積法求三棱錐的體積;(Ⅲ)直接利用反證法證明與不垂直.【題目詳解】(Ⅰ)如圖,連接,∵是中點(diǎn),是中點(diǎn),∴,而平面,平面,∴平面,又∵是中點(diǎn),是中點(diǎn),∴,而平面,平面,∴平面,又∴平面平面,即平面.(Ⅱ)∵底面,∴,又四邊形為菱形,∴,又,∴平面,而為的中點(diǎn),∴.(Ⅲ)假設(shè),又,且,∴平面,則,與矛盾,∴假設(shè)錯(cuò)誤,故與不垂直.【題目點(diǎn)撥】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓(xùn)練了利用反證法證明線線垂直問(wèn)題,訓(xùn)練了利用等積法求解多面體的體積,屬于中檔題.20、(1)證明見解析;(2).【解題分析】

(1)由面面垂直的性質(zhì)定理得出平面,可得出,再推導(dǎo)出,利用線面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推導(dǎo)出平面,計(jì)算出的面積,然后利用錐體體積公式可求得三棱錐的體積,進(jìn)而得解.【題目詳解】(1)因?yàn)樗倪呅问蔷匦?,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;?)的面積為,,平面,所以,平面,,故.【題目點(diǎn)撥】本題考查面面垂直的證明,同時(shí)也考查

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論