2024屆廣東省廣州市華南師大附屬中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第1頁
2024屆廣東省廣州市華南師大附屬中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第2頁
2024屆廣東省廣州市華南師大附屬中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第3頁
2024屆廣東省廣州市華南師大附屬中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第4頁
2024屆廣東省廣州市華南師大附屬中學高一數(shù)學第二學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省廣州市華南師大附屬中學高一數(shù)學第二學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,若,,則的最大值為()A. B. C.4 D.52.為三角形ABC的一個內(nèi)角,若,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形C.等腰直角三角形 D.等腰三角形3.若向量,,則在方向上的投影為()A.-2 B.2 C. D.4.已知函數(shù),下列結論錯誤的是()A.既不是奇函數(shù)也不是偶函數(shù) B.在上恰有一個零點C.是周期函數(shù) D.在上是增函數(shù)5.已知冪函數(shù)過點,令,,記數(shù)列的前項和為,則時,的值是()A.10 B.120 C.130 D.1406.已知在角終邊上,若,則()A. B.-2 C.2 D.7.已知x,y∈R,且x>y>0,則()A. B.C. D.lnx+lny>08.在中,點滿足,則()A. B.C. D.9.某校有高一學生人,高二學生人,高三學生人,現(xiàn)教育局督導組欲用分層抽樣的方法抽取名學生進行問卷調(diào)查,則下列判斷正確的是()A.高一學生被抽到的可能性最大 B.高二學生被抽到的可能性最大C.高三學生被抽到的可能性最大 D.每位學生被抽到的可能性相等10.已知三個內(nèi)角、、的對邊分別是,若,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標系xOy中,雙曲線的右支與焦點為F的拋物線交于A,B兩點若,則該雙曲線的漸近線方程為________.12.已知向量,,且,則的值為________.13.等比數(shù)列{an}中,a1<0,{an}是遞增數(shù)列,則滿足條件的q的取值范圍是______________.14.的值為________.15.某單位為了了解用電量度與氣溫之間的關系,隨機統(tǒng)計了某天的用電量與當天氣溫.氣溫(℃)141286用電量(度)22263438由表中數(shù)據(jù)得回歸直線方程中,據(jù)此預測當氣溫為5℃時,用電量的度數(shù)約為____.16.在銳角△中,角所對應的邊分別為,若,則角等于________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為.(1)若,求角的大??;(2)若是邊上的中線,求證:.18.如圖,在平行四邊形中,,,,與的夾角為.(1)若,求、的值;(2)求的值;(3)求與的夾角的余弦值.19.已知四棱錐的底面ABCD是菱形,平面ABCD,,,F(xiàn),G分別為PD,BC中點,.(Ⅰ)求證:平面PAB;(Ⅱ)求三棱錐的體積;(Ⅲ)求證:OP與AB不垂直.20.如圖,在以、、、、、為頂點的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.21.記Sn為等差數(shù)列an的前n項和,已知(1)求an(2)求Sn,并求S

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

設,由可得點的軌跡方程,再對兩邊平方,利用一元二次函數(shù)的性質求出最大值,即可得答案.【題目詳解】設,,∵,∴,整理得:.∵,∴,當時,的最大值為,∴的最大值為.故選:A.【題目點撥】本題考查向量模的最值、模的坐標運算、一元二次函數(shù)的性質,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標法的運用.2、B【解題分析】試題分析:由,兩邊平方得,即,又,則,所以為第三、四象限角或軸負半軸上的角,所以為鈍角.故正確答案為B.考點:1.三角函數(shù)的符號、平方關系;2.三角形內(nèi)角.3、A【解題分析】向量,,所以,||=5,所以在方向上的投影為=-2故選A4、B【解題分析】

將函數(shù)利用同角三角函數(shù)的基本關系,化成,再對選項進行一一驗證,即可得答案.【題目詳解】∵,對A,∵,∴既不是奇函數(shù)也不是偶函數(shù),故A命題正確;對B,令,解關于的一元二次方程得:,∵,∴方程存在兩個根,∴在上有兩個零點,故B錯誤;對C,顯然是函數(shù)的一個周期,故C正確;對D,令,則,∵在單調(diào)遞減,且,又∵在單調(diào)遞減,∴在上是增函數(shù),故D正確;故選:B【題目點撥】本題考查復合函數(shù)的單調(diào)性、奇偶性、周期性、零點,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意復合函數(shù)周增異減原則.5、B【解題分析】

根據(jù)冪函數(shù)所過點求得冪函數(shù)解析式,由此求得的表達式,利用裂項求和法求得的表達式,解方程求得的值.【題目詳解】設冪函數(shù)為,將代入得,所以.所以,所以,故,由解得,故選B.【題目點撥】本小題主要考查冪函數(shù)解析式的求法,考查裂項求和法,考查方程的思想,屬于基礎題.6、C【解題分析】

由正弦函數(shù)的定義求解.【題目詳解】,顯然,∴.故選C.【題目點撥】本題考查正弦函數(shù)的定義,屬于基礎題.解題時注意的符號.7、A【解題分析】

結合選項逐個分析,可選出答案.【題目詳解】結合x,y∈R,且x>y>0,對選項逐個分析:對于選項A,,,故A正確;對于選項B,取,,則,故B不正確;對于選項C,,故C錯誤;對于選項D,,當時,,故D不正確.故選A.【題目點撥】本題考查了不等式的性質,屬于基礎題.8、D【解題分析】

因為,所以,即;故選D.9、D【解題分析】

根據(jù)分層抽樣是等可能的選出正確答案.【題目詳解】由于分層抽樣是等可能的,所以每位學生被抽到的可能性相等,故選D.【題目點撥】本小題主要考查隨機抽樣的公平性,考查分層抽樣的知識,屬于基礎題.10、D【解題分析】

根據(jù)正弦定理把邊化為對角的正弦求解.【題目詳解】【題目點撥】本題考查正弦定理,邊角互換是正弦定理的重要應用,注意增根的排除.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)題意到,聯(lián)立方程得到,得到答案.【題目詳解】,故.,故,故,故.故雙曲線漸近線方程為:.故答案為:.【題目點撥】本題考查了雙曲線的漸近線問題,意在考查學生的計算能力和綜合應用能力.12、【解題分析】

利用共線向量的坐標表示求出的值,可計算出向量的坐標,然后利用向量的模長公式可求出的值.【題目詳解】,,且,,解得,,則,因此,,故答案為:.【題目點撥】本題考查利用共線向量的坐標表示求參數(shù),同時也考查了向量模的坐標運算,考查計算能力,屬于基礎題.13、【解題分析】試題分析:由題意可得,∴,解得0<q<1考點:等比數(shù)列的性質14、【解題分析】

利用同角三角函數(shù)的基本關系式、二倍角公式,結合根式運算,化簡求得表達式的值.【題目詳解】依題意,由于,所以故答案為:【題目點撥】本小題主要考查同角三角函數(shù)的基本關系式、二倍角公式,考查根式運算,屬于基礎題.15、1【解題分析】

由表格得,即樣本中心點的坐標為,又因為樣本中心點在回歸方程上且,解得:,當時,,故答案為1.考點:回歸方程【名師點睛】本題考查線性回歸方程,屬容易題.兩個變量之間的關系,除了函數(shù)關系,還存在相關關系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關系的了解.解題時根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個確定的方程,根據(jù)所給的的值,代入線性回歸方程,預報要銷售的件數(shù).16、【解題分析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應用.【方法點晴】本題主要考查了正弦定理的應用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉化為三角函數(shù)求值的應用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解題分析】

(1)已知三邊的關系且有平方,考慮化簡式子構成余弦定理即可。(2)觀察結論形似余弦定理,通過,則互補,則余弦值互為相反數(shù)聯(lián)系?!绢}目詳解】(1)∵,∴∴由余弦定理,得,∴∵,∴,∵,∴(2)設,,則在中,由余弦定理,得在中,同理,得∵,∴,∵,∴,∴【題目點撥】解三角形要注意觀察題干條件所給的形式,出現(xiàn)邊長平方一般會考慮用到余弦定理。正弦定理和余弦定理是我們解三角形的兩大常用工具,需要熟練運用。18、(1),;(2);(3).【解題分析】試題分析:(1)根據(jù)向量的運算有,可知,由模長即可求得、的值;(2)先求得向量,再根據(jù)向量的數(shù)量積及便可求得;(3)由前面的求解可得及,可利用求得向量夾角的余弦值.試題解析:(1)因為,所以即.(2)由向量的運算法則知,,所以.(3)因為與的夾角為,所以與的夾角為,又,所以..設與的夾角為,可得.所以與的夾角的余弦值為.考點:向量的運算.【思路點睛】本題主要考查向量的運算及單位向量,平面任一向量都可用兩個不共線的單位向量來表示,其對應坐標就是沿單位向量方向上向量的模長;而對于向量的數(shù)量積,在得知模長及夾角的情況下,可以用兩向量模長與夾角余弦三者的乘積來計算,也可轉化為單位向量的數(shù)量積進行求解;而向量夾角的余弦值則經(jīng)常通過向量的數(shù)量積與向量模長的比值來求得.19、(Ⅰ)見解析(Ⅱ)(Ⅲ)見解析【解題分析】

(Ⅰ)連接,,由已知結合三角形中位線定理可得平面,再由面面平行的判斷可得平面平面,進而可得平面;(Ⅱ)首先證明平面,而為的中點,然后利用等積法求三棱錐的體積;(Ⅲ)直接利用反證法證明與不垂直.【題目詳解】(Ⅰ)如圖,連接,∵是中點,是中點,∴,而平面,平面,∴平面,又∵是中點,是中點,∴,而平面,平面,∴平面,又∴平面平面,即平面.(Ⅱ)∵底面,∴,又四邊形為菱形,∴,又,∴平面,而為的中點,∴.(Ⅲ)假設,又,且,∴平面,則,與矛盾,∴假設錯誤,故與不垂直.【題目點撥】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓練了利用反證法證明線線垂直問題,訓練了利用等積法求解多面體的體積,屬于中檔題.20、(1)證明見解析;(2).【解題分析】

(1)由面面垂直的性質定理得出平面,可得出,再推導出,利用線面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推導出平面,計算出的面積,然后利用錐體體積公式可求得三棱錐的體積,進而得解.【題目詳解】(1)因為四邊形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面積為,,平面,所以,平面,,故.【題目點撥】本題考查面面垂直的證明,同時也考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論