版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆四川省廣元市實驗中學數(shù)學高一第二學期期末教學質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等腰梯形ABCD中,,點E是線段BC的中點,若,則A. B. C. D.2.已知,且,則下列不等式正確的是()A. B. C. D.3.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B. C. D.4.古代數(shù)學著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為A.2031 B.35 C.85.已知函數(shù)的圖象如圖所示,則的解析式為()A. B.C. D.6.在中,若,則下列結(jié)論錯誤的是()A.當時,是直角三角形 B.當時,是銳角三角形C.當時,是鈍角三角形 D.當時,是鈍角三角形7.點關(guān)于直線的對稱點的坐標為()A. B. C. D.8.已知向量,,,且,則實數(shù)的值為A. B. C. D.9.擲兩顆均勻的骰子,則點數(shù)之和為5的概率等于()A. B. C. D.10.在△中,若,則△為()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域為________.12.的最大值為______.13.設(shè)為數(shù)列的前項和,則__14.已知等差數(shù)列滿足,則____________.15.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.16.設(shè)等差數(shù)列的前項和為,若,,則的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角所對邊分別為,已知.(1)求;(2)若,,求的面積.18.如圖,在四棱錐中,丄平面,,,,,.(1)證明丄;(2)求二面角的正弦值;(3)設(shè)為棱上的點,滿足異面直線與所成的角為,求的長.19.已知.(1)求函數(shù)的最小正周期;(2)求函數(shù)在閉區(qū)間上的最小值并求當取最小值時,的取值.20.如圖,四邊形是邊長為2的正方形,為的中點,以為折痕把折起,使點到達點的位置,且.(1)求證:平面平面;(2)求二面角的余弦值.21.已知函數(shù).(1)若在區(qū)間上的最小值為,求的值;(2)若存在實數(shù),使得在區(qū)間上單調(diào)且值域為,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
利用平面向量的幾何運算,將用和表示,根據(jù)平面向量基本定理得,的值,即可求解.【題目詳解】取AB的中點F,連CF,則四邊形AFCD是平行四邊形,所以,且因為,,,∴故選B.【題目點撥】本題主要考查了平面向量的基本定理的應(yīng)用,其中解答中根據(jù)平面向量的基本定理,將用和進行表示,求得的值是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、B【解題分析】
通過反例可排除;根據(jù)的單調(diào)性可知正確.【題目詳解】當,時,,,則錯誤;當,時,,則錯誤;由單調(diào)遞增可知,當時,,則正確本題正確選項:【題目點撥】本題考查不等關(guān)系的判斷,解決此類問題常采用排除法,屬于基礎(chǔ)題.3、A【解題分析】
若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質(zhì)4、A【解題分析】
由題意可得該女子每天織布的尺數(shù)構(gòu)成一個等比數(shù)列,且數(shù)列的公比為2,由題意求出數(shù)列的首項后可得第3天織布的尺數(shù).【題目詳解】由題意可得該女子每天織布的尺數(shù)構(gòu)成一個等比數(shù)列,且數(shù)列的公比為2,前5項的和為5,設(shè)首項為a1,前n項和為S則由題意得S5∴a1∴a3即該女子第3天所織布的尺數(shù)為2031故選A.【題目點撥】本題以中國古文化為載體考查等比數(shù)列的基本運算,解題的關(guān)鍵是正確理解題意,將問題轉(zhuǎn)化成等比數(shù)列的知識求解,考查閱讀理解和轉(zhuǎn)化、計算能力.5、D【解題分析】
由函數(shù)圖象求出,由周期求出,由五點發(fā)作圖求出的值,即可求出函數(shù)的解析式.【題目詳解】解:根據(jù)函數(shù)的圖象,可得,,所以.再根據(jù)五點法作圖可得,所以,故.故選:D.【題目點撥】本題主要考查由函數(shù)的部分圖像求解析式,屬于基礎(chǔ)題.6、D【解題分析】
由正弦定理化簡已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識逐一分析各個選項即可得解.【題目詳解】解:為非零實數(shù)),可得:,由正弦定理,可得:,對于A,時,可得:,可得,即為直角,可得是直角三角形,故正確;對于B,時,可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對于C,時,可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對于D,時,可得:,可得,這樣的三角形不存在,故錯誤.故選:D.【題目點撥】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.7、D【解題分析】令,設(shè)對稱點的坐標為,可得的中點在直線上,故可得①,又可得的斜率,由垂直關(guān)系可得②,聯(lián)立①②解得,即對稱點的坐標為,故選D.點睛:本題考查對稱問題,得出中點在直線且連線與已知直線垂直是解決問題的關(guān)鍵,屬中檔題;點關(guān)于直線成軸對稱問題,由軸對稱定義知,對稱軸即為兩對稱點連線的“垂直平分線”,利用“垂直”即斜率關(guān)系,“平分”即中點在直線上這兩個條件建立方程組,就可求出對稱點的坐標.8、A【解題分析】
求出的坐標,由得,得到關(guān)于的方程.【題目詳解】,,因為,所以,故選A.【題目點撥】本題考查向量減法和數(shù)量積的坐標運算,考查運算求解能力.9、B【解題分析】
試題分析:擲兩顆均勻的骰子,共有36種基本事件,點數(shù)之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點:概率問題10、A【解題分析】
利用正弦定理化簡已知條件,得到,由此得到,進而判斷出正確選項.【題目詳解】由正弦定理得,所以,所以,故三角形為等腰三角形,故選A.【題目點撥】本小題主要考查利用正弦定理判斷三角形的形狀,考查同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
利用反三角函數(shù)的單調(diào)性即可求解.【題目詳解】函數(shù)是定義在上的增函數(shù),函數(shù)在區(qū)間上單調(diào)遞增,,,函數(shù)的值域是.故答案為:【題目點撥】本題考查了反三角函數(shù)的單調(diào)性以及反三角函數(shù)值,屬于基礎(chǔ)題.12、3【解題分析】
由余弦型函數(shù)的值域可求得整個函數(shù)的值域,進而得到最大值.【題目詳解】,即故答案為:【題目點撥】本題考查含余弦型函數(shù)的值域的求解問題,關(guān)鍵是明確在自變量無范圍限制時,余弦型函數(shù)的值域為.13、【解題分析】
當時,;當時,,即,若為偶數(shù),則為奇數(shù));若為奇數(shù),則,故是偶數(shù)).因為,,所以,同理可得,,,所以,應(yīng)選答案.點睛:本題運用演繹推理的思維方法,分別探求出數(shù)列各項的規(guī)律(成等比數(shù)列),再運用等比數(shù)列的求和公式,使得問題簡捷、巧妙獲解.14、9【解題分析】
利用等差數(shù)列下標性質(zhì)求解即可【題目詳解】由等差數(shù)列的性質(zhì)可知,,則.所以.故答案為:9【題目點撥】本題考查等差數(shù)列的性質(zhì),熟記性質(zhì)是關(guān)鍵,是基礎(chǔ)題15、【解題分析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設(shè)是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設(shè)另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2根據(jù)等差中項的性質(zhì)可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m﹣n|即可.【題目詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設(shè)是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設(shè)方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關(guān)系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質(zhì)可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【題目點撥】本題主要考查了等差數(shù)列的性質(zhì).考查了學生創(chuàng)造性思維和解決問題的能力.16、-6【解題分析】
由題意可得,求解即可.【題目詳解】因為等差數(shù)列的前項和為,,所以由等差數(shù)列的通項公式與求和公式可得解得.故答案為-6.【題目點撥】本題考查了等差數(shù)列的通項公式與求和公式,考查了學生的計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)5.【解題分析】
(1)根據(jù)正弦定理得,化簡即得C的值;(2)先利用余弦定理求出a的值,再求的面積.【題目詳解】(1)因為,根據(jù)正弦定理得,又,從而,由于,所以.(2)根據(jù)余弦定理,而,,,代入整理得,解得或(舍去).故的面積為.【題目點撥】本題主要考查正弦余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.18、(1)見證明;(2);(3)【解題分析】
(1)要證異面直線垂直,即證線面垂直,本題需證平面(2)作于點,連接.為二面角的平面角,在中解出即可.(3)過點作的平行線與線段相交,交點為,連接,;計算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的長【題目詳解】(1)證明:由平面,可得,又由,,故平面.又平面,所以.(2)如圖,作于點,連接.由,,可得平面.因此,從而為二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值為.(3)因為,故過點作的平行線必與線段相交,設(shè)交點為,連接,;∴或其補角為異面直線與所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,設(shè);在中,;在中,;∴在中,,∴;;解得;∴.【題目點撥】本題主要考查線線垂直、二面角的平面角、異面直線所成角的.屬于中檔題.19、(1);(2),【解題分析】
(1)先化簡,再求最小正周期;(2)由,得,再結(jié)合的函數(shù)圖像求最小值.【題目詳解】(1),即,所以的最小正周期是;(2)由(1)知,又由,得,所以當時,的最小值為,即時,的最小值為.【題目點撥】本題考查三角恒等變換,考查三角函數(shù)圖像的性質(zhì)應(yīng)用,屬于中檔題.20、(1)見解析;(2)【解題分析】
(1)先由線面垂直的判定定理得到平面,進而可得平面平面;(2)先取中點,連結(jié),,證明平面平面,在平面內(nèi)作于點,則平面.以點為原點,為軸,為軸,如圖建立空間直角坐標系.分別求出兩平面的法向量,求向量夾角余弦值,即可求出結(jié)果.【題目詳解】(1)因為四邊形是正方形,所以折起后,且,因為,所以是正三角形,所以.又因為正方形中,為的中點,所以,所以,所以,所以,又因為,所以平面.又平面,所以平面平面.(2)取中點,連結(jié),,則,,又,則平面.又平面,所以平面平面.在平面內(nèi)作于點,則平面.以點為原點,為軸,為軸,如圖建立空間直角坐標系.在中,,,.∴,,故,,,∴,.設(shè)平面的一個法向量為,則由,得,令,得,,∴.因為平面的法向量為,則,又二面角為銳二面角,∴二面角的余弦值為.【題目點撥】本題主要考查面面垂直的判定,以及二面角的余弦值,熟記面面垂直的判定定理、以及二面角的向量求法即可,屬于??碱}型.21、(1);(2).【解題分析】
(1)根據(jù)二次函數(shù)單調(diào)性討論即可解決.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025黃石市餐飲娛樂業(yè)勞動合同
- 遼寧某壓縮機擴產(chǎn)建設(shè)項目可行性研究報告
- 2024年航空飛行培訓行業(yè)發(fā)展監(jiān)測及投資方向研究報告
- XX博物館可行性研究報告范例
- 2025年鏈鋸市場分析報告
- 2025防水工程施工合同模板
- 2024-2025年中國區(qū)域金融體系創(chuàng)新市場市場供需格局及未來發(fā)展趨勢報告
- 新疆昌吉回族自治州2024年中考語文模擬試卷含答案
- 工程造價畢業(yè)論文開題報告6
- 中國男士化妝品行業(yè)市場運行態(tài)勢及投資戰(zhàn)略咨詢研究報告
- 工抵房協(xié)議模板
- 校本課程《典籍里的中國》教案
- CNAS-CV03-2022 溫室氣體 第三部分 溫室氣體聲明審定與核查規(guī)范和指南
- 四年級上冊信息技術(shù)教案-9演示文稿巧編輯 |人教版
- 2022年人力資源管理各專業(yè)領(lǐng)域必備知識技能
- 租賃(出租)物品清單表
- 提高聚氯乙烯卷材地面一次驗收合格率
- 【部編版】2022年語文七年級上:作文能力提升—謀篇布局(含答案)
- 甲型H1N1流感防治應(yīng)急演練方案(1)
- LU和QR分解法解線性方程組
- 漏油器外殼的落料、拉深、沖孔級進模的設(shè)計【畢業(yè)論文絕對精品】
評論
0/150
提交評論