上海市青浦區(qū)2023年高一上數(shù)學期末質量檢測模擬試題含解析_第1頁
上海市青浦區(qū)2023年高一上數(shù)學期末質量檢測模擬試題含解析_第2頁
上海市青浦區(qū)2023年高一上數(shù)學期末質量檢測模擬試題含解析_第3頁
上海市青浦區(qū)2023年高一上數(shù)學期末質量檢測模擬試題含解析_第4頁
上海市青浦區(qū)2023年高一上數(shù)學期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市青浦區(qū)2023年高一上數(shù)學期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.函數(shù)f(x)=ax(a>0,a≠1)對于任意的實數(shù)xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)2.下列函數(shù)中,是偶函數(shù),且在區(qū)間上單調遞增的為()A. B.C. D.3.函數(shù)lgx=3,則x=()A1000 B.100C.310 D.304.已知函數(shù)且,則實數(shù)的范圍()A. B.C. D.5.已知函數(shù)的定義域為,若是奇函數(shù),則A. B.C. D.6.函數(shù)圖像大致為()A. B.C. D.7.下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則8.已知函數(shù),則下列判斷正確的是A.函數(shù)是奇函數(shù),且在R上是增函數(shù)B.函數(shù)偶函數(shù),且在R上是增函數(shù)C.函數(shù)是奇函數(shù),且在R上是減函數(shù)D.函數(shù)是偶函數(shù),且在R上是減函數(shù)9.已知函數(shù),且,則滿足條件的的值得個數(shù)是A.1 B.2C.3 D.410.函數(shù),,則函數(shù)的圖象大致是()A. B.C. D.11.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是()A.108cm3 B.100cm3C.92cm3 D.84cm312.第24屆冬季奧林匹克運動會,將于2022年2月4日~2月20日在北京和張家口聯(lián)合舉行.為了更好地安排志愿者工作,現(xiàn)需要了解每個志愿者掌握的外語情況,已知志愿者小明只會德、法、日、英四門外語中的一門.甲說,小明不會法語,也不會日語:乙說,小明會英語或法語;丙說,小明會德語.已知三人中只有一人說對了,由此可推斷小明掌握的外語是()A.德語 B.法語C.日語 D.英語二、填空題(本大題共4小題,共20分)13.在中,邊上的中垂線分別交于點若,則_______14.已知任何一個正實數(shù)都可以表示成,則的取值范圍是________________;的位數(shù)是________________.(參考數(shù)據(jù))15.已知集合A={x|2x>1},B={x|log2x<0},則?AB=___16.已知,,則函數(shù)的值域為______三、解答題(本大題共6小題,共70分)17.已知,且為第二象限角(1)求的值;(2)求值.18.函數(shù)是定義在上的奇函數(shù),且.(1)確定函數(shù)的解析式;(2)用定義證明在上是增函數(shù).19.已知集合,(1)當時,求;(2)若,求的取值范圍20.已知函數(shù),其中向量,,.(1)求函數(shù)的最大值;(2)求函數(shù)的單調遞增區(qū)間.21.已知且,函數(shù).(1)求的定義域;(2)判斷的奇偶性,并用定義證明;(3)求使的取值范圍.22.如圖,是正方形,直線底面,,是的中點.(1)證明:直線平面;(2)求直線與平面所成角的正切值.

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】由指數(shù)的運算性質得到ax+y【詳解】解:由函數(shù)f(x)=a得f(x+y)=a所以函數(shù)f(x)=ax(a>0,a≠1)對于任意的實數(shù)x、y故選:B.【點睛】本題考查了指數(shù)的運算性質,是基礎題.2、D【解析】根據(jù)基本初等函數(shù)的奇偶性及單調性逐一判斷.【詳解】A.在其定義域上為奇函數(shù);B.,在區(qū)間上時,,其為單調遞減函數(shù);C.在其定義域上為非奇非偶函數(shù);D.的定義域為,在區(qū)間上時,,其為單調遞增函數(shù),又,故在其定義域上為偶函數(shù).故選:D.3、A【解析】由lgx=3,可得直接計算出結果.【詳解】由lgx=3,有:則,故選:A【點睛】本題考查對數(shù)的定義,屬于基礎題.4、B【解析】根據(jù)解析式得,進而得令,得為奇函數(shù),,進而結合函數(shù)單調性求解即可.【詳解】函數(shù),定義域為,滿足,所以,令,所以,所以奇函數(shù),,函數(shù)在均為增函數(shù),所以在為增函數(shù),所以在為增函數(shù),因為為奇函數(shù),所以在為增函數(shù),所以,解得.故選:B.5、D【解析】由為奇函數(shù),可得,求得,代入計算可得所求值【詳解】是奇函數(shù),可得,且時,,可得,則,可得,則,故選D【點睛】本題考查函數(shù)的奇偶性的判斷和運用,考查定義法和運算能力,屬于基礎題6、B【解析】先求出函數(shù)的定義域,判斷出函數(shù)為奇函數(shù),排除選項D,由當時,,排除A,C選項,得出答案.【詳解】解析:定義域為,,所以為奇函數(shù),可排除D選項,當時,,,由此,排除A,C選項,故選:B7、C【解析】分析】利用不等式性質逐一判斷即可.【詳解】選項A中,若,,則,若,,則,故錯誤;選項B中,取,滿足,但,故錯誤;選項C中,若,則兩邊平方即得,故正確;選項D中,取,滿足,但,故錯誤.故選:C.【點睛】本題考查了利用不等式性質判斷大小,屬于基礎題.8、A【解析】求出的定義域,判斷的奇偶性和單調性,進而可得解.【詳解】的定義域為R,且;∴是奇函數(shù);又和都是R上的增函數(shù);是R上的增函數(shù)故選A【點睛】本題考查奇偶性的判斷,考查了指數(shù)函數(shù)的單調性,屬于基礎題9、D【解析】令則即當時,當時,則令,,由圖得共有個點故選10、C【解析】先判斷出為偶函數(shù),排除A;又,排除D;利用單調性判斷B、C.【詳解】因為函數(shù),,所以函數(shù).所以定義域為R.因為,所以為偶函數(shù).排除A;又,排除D;因為在為增函數(shù),在為增函數(shù),所以在為增函數(shù).因為為偶函數(shù),圖像關于y軸對稱,所以在為減函數(shù).故B錯誤,C正確.故選:C11、B【解析】由三視圖可知:該幾何體是一個棱長分別為6,6,3,砍去一個三條側棱長分別為4,4,3的一個三棱錐(長方體的一個角).據(jù)此即可得出體積.解:由三視圖可知:該幾何體是一個棱長分別為6,6,3,砍去一個三條側棱長分別為4,4,3的一個三棱錐(長方體的一個角).∴該幾何體的體積V=6×6×3﹣=100.故選B.考點:由三視圖求面積、體積.12、B【解析】根據(jù)題意,分“甲說對,乙、丙說錯”、“乙說對,甲、丙說錯”、“丙說對,甲、乙說錯”三種情況進行分析,即可得到結果.【詳解】若甲說對,乙、丙說錯:甲說對,小明不會法語也不會日語;乙說錯,則小明不會英語也不會法語;丙說錯,則小明不會德語,由此可知,小明四門外語都不會,不符合題意;若乙說對,甲、丙說錯:乙說對,則小明會英活或法語;甲說錯,則小明會法語或日語;丙說錯,小明不會德語;則小明會法語;若丙說對,甲、乙說錯:丙說對,則小明會德語;甲說錯,到小明會法語或日語;乙說錯,則小明不會英語也不會法語;則小明會德語或日語,不符合題意;綜上,小明會法語.故選:B.二、填空題(本大題共4小題,共20分)13、4【解析】設,則,,又,即,故答案為.14、①.②.【解析】根據(jù)對數(shù)函數(shù)的單調性及對數(shù)運算、對數(shù)式指數(shù)式的轉化即可求解.【詳解】因為,所以,由,故知,共有31位.故答案為:;3115、[1,+∞)【解析】由指數(shù)函數(shù)的性質化簡集合;由對數(shù)函數(shù)的性質化簡集合,利用補集的定義求解即可.【詳解】,所以,故答案為.【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉化為元素間的關系,本題實質求滿足屬于集合且不屬于集合的元素的集合.16、【解析】,又,∴,∴故答案為三、解答題(本大題共6小題,共70分)17、(1)cos,(2)【解析】(1)通過三角恒等式先求,再求即可;(2)先通過誘導公式進行化簡,再將,的值代入即可得結果.【小問1詳解】因為sin=,所以,且是第二象限角,所以cos=,從而【小問2詳解】原式=18、(1);(2)證明見解析.【解析】(1)由函數(shù)是定義在上的奇函數(shù),則,解得的值,再根據(jù),解得的值從而求得的解析式;(2)設,化簡可得,然后再利用函數(shù)的單調性定義即可得到結果【詳解】解:(1)依題意得∴∴∴(2)證明:任取,∴∵,∴,,,由知,,∴.∴.∴在上單調遞增.19、(1);(2).【解析】(1)當時,可求出集合,再求出集合,取交集即可得到答案.(2)根據(jù),可得,分別求出集合和集合,集合是集合的子集,即可得到答案.【小問1詳解】當時,集合,,即集合,,故.【小問2詳解】,集合,集合,.20、見解析【解析】【試題分析】(1)利用向量的運算,求出的表達式并利用輔助角公式化簡,由此求得函數(shù)的最大值.(2)將(1)中求得的角代入正弦函數(shù)的遞增區(qū)間,解出的取值范圍,即為函數(shù)的遞增區(qū)間.【試題解析】(Ⅰ),當時,有最大值.(Ⅱ)令,得函數(shù)的單調遞增區(qū)間為【點睛】本題主要考查向量的數(shù)量積運算,考查三角函數(shù)輔助角公式,考查三角函數(shù)最大最小值的求法,考查三角函數(shù)單調性即三角函數(shù)圖像與性質.首先根據(jù)向量數(shù)量積的運算,化簡函數(shù),這是題目中向量坐標運算的運用,化簡三角函數(shù)要為次數(shù)是一次的形如的形式.21、(1);(2)函數(shù)是偶函數(shù),詳見解析;(3)當時,;當時,或.【解析】(1)根據(jù)對數(shù)的真數(shù)為正數(shù)列式可解得結果;(2)函數(shù)是偶函數(shù),根據(jù)偶函數(shù)的定義證明即可;(3)不等式化為后,分類討論底數(shù),根據(jù)對數(shù)函數(shù)的單調性可解得結果.【小問1詳解】要使函數(shù)數(shù)有意義,則必有,解得,所以函數(shù)的定義域是;【小問2詳解】函數(shù)是偶函數(shù),證明如下:∵,,又∴函數(shù)是偶函數(shù);【小問3詳解】使,即當時,有,,當時,有,解得或.綜上所述:當時,;當時,或.22、(1)證明見解析;(2);【解析】(1)連接,由三角形中位線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論