版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
LogicinComputerScience
YongmeiLiu
ymliu@
Dept,ofComputerScience
SunYat-senUniversity
December14,2009
Y.LiuLogicinComputerScience1/41
Introductionandoutline
FocusonapplicationsoflogicincomputerScience
JSATsolversandapplications
JProgramverification
」Modelchecking
口Cognitiverobotics
Y.LiuLogicinComputerScience2/41
Amotivatingexample
WewouldliketoselectpeoplefromAnn,Bob,CarolandDanfora
certainjob.Thefollowingconstraintsmustbesatisfied:
■BoborCarolshouldbeselected
aAnnandDancannotbebothselected
aIfBobisselected,Danshouldalsobeselected
Howshouldweselectthepeople?
(6Vc)A(-?QV「d)AVd)
{B,D}
Whatifwehavemanypeopleandmanyconstraints?
Y.LiuLogicinComputerScience3/41
WhatisSAT?
aAliteralisanatomorthenegationofanatom
aAclauseisadisjunctionofliterals
aAformulaisinConjunctiveNormalForm(CNF)ifitisa
conjunctionofclauses
aExample:(5Vc)A(->aV->d)A(T)Vd)
flSAT:GivenapropositionalformulainCNF,decideifthere
existsatruthassignmentthatsatisfiestheformula
Y.LiuLogicinComputerScience4/41
Timecomplexityofalgorithms
Expressedintermsofthenumberofoperationsused
aDecideifatruthassignmentsatisfiesaCNFformula:O(m)
aNaivealgorithmtosolveSAT:O^2nm)
n-thenumberofatoms,m-thelengthoftheformula
Thecomputertimeusedbyalgorithms
ProblemSizeBitOperationsUsed
nnnlog/7n12”
103X10-9s10-8s3XIO-8sKT?5|o-6§
IO27x10-9$10-7§7x)0"7sIO_5s4X10"yr
1031(0X10%IO-6s1X10-5sICT?§*
IO4l(3XIO-8sIO-s1X10-%10Ts*
IO5l(7xIO-8sIO_4s2XIO_3s10s?
IO62x10-8$10-3$2X10-%17min*
*:morethanIO100years
Y.LiuLogicinComputerScience5/41
Pvs.NP
aP:theclassofproblemsforwhichthereexistsaprocedure
thatrunsinpolynomialtime
aExample:decideifatruthassignmentsatisfiesaformula
flNP:theclassofproblemswherewearesearchingforanitem
inalargespaceofpossibilities,butwherewecantestifa
candidateitemisasolutioninpolynomialtime
aExample:decideifapropositionalformulaissatisfiable
■P=NP?OneofthesevenMillenniumPrizeProblems
selectedbytheClayMathematicsInstitutetocarryaUS$
1,000,000prizeforthefirstcorrectsolution.
aItisgenerallyacceptedthatP*NP
Y.LiuLogicinComputerScience6/41
NPCompleteness
aAproblemisNP-completeifitisinNPandanyproblemin
NPcanbereducedtoitinpolynomialtime
aifanyNP-completeproblemisinP,thenP=NP
aSATisaclassicalNP-completeproblem,soanyproblemin
NPcanbereducedtoSATinpolytime
aTherearethousandsofcomputationalproblemsofeconomic
significancethatareknowntobeinNP
aStephenCookreceivedthe1982Turingawardforhisworkon
NP-completeness
Y.LiuLogicinComputerScience7/41
TheDPLLprocedure
NamedaftertheauthorsDavis,Putnam,Logemann,andLoveland
dpll(F):
JIfthesetofclausesFisempty,return1
JIfFcontainsanemptyclause,return0
JIfFcontainsaunitclauseMtreturndpl(M,F)
asimplifyFusingM,getG,returndpll(G)
hJChooseanatomA
Jreturndpl(A,F)Vdpl(->A,F)
Example:(feVc)A(->QV->d)A(-Vd)
CompleteSATsolver
Y.LiuLogicinComputerScience8/41
TheGSATprocedure
aWestartwitharandomtruthassignmenttoallatoms,
aandthenstartchangingthetruthofcertainatomsuntil
aweeitherobtainasatisfyingassignmentorgiveupandtry
again(uptoamaximum)
aGSAToftenoutperformsdpll
aIncompleteSATsolver
Y.LiuLogicinComputerScience9/41
ProgressofSATsolvers
a1960-2010,about50yearshistory
■1995-2010,significantgrowthandsuccessinSATsolver,
researchbasedonDPLL
aThenumberofvariables:10—>106
aManypracticalapplicationsemerged,pushsolverstotheir
limits,andmotivatemoreefficientalgorithm
aNewtechniquesforSATsolversemergeoneaftertheother
aGRASP(1996):thepioneerof2ndgenerationofSATsolver
aCHAFF(2001):carefulengineeringallaspectsofthesearch
Y.LiuLogicinComputerScience10/41
TheN-queensproblem
GivenNqueensandanNxNchessboard,
findawayofplacingthosequeensinsuch
awaythatnoneofthemcanattackanyof
theothers.
eachqueenmustbe
onitsown
,row
?column
,leftdiagonal\
?rightdiagonal/
Y.LiuLogicinComputerScience11/41
EncodingtheN-queensinSAT
Weillustratethecasewheren=8
Introduce8x8atomsp?jsaying
"thereisaqueenatrowiandcolumnj”
aThereisatleast1queenoneveryrow
AL1Vj=lPij
aThereisatmost1queenoneveryrow
Ai=lAj=lAfc=J+lVrpik)
aThereisatleast1queenoneverycolumn
aThereisatmost1queenoneverycolumn
aThereisatmost1queenoneveryleftdiagonal
aThereisatmost1queenoneveryrightdiagonal
Y.LiuLogicinComputerScience12/41
RunningtheN-queens
Ingeneral,theprocedureweuseisthis:
1.wereadtheprobleminput(inthiscase,justn)
2.weconstructtheclausalformulaF
3.wecallaSATsolver
4.wetranslatethesatisfyingtruthassignment
backintothedesiredproblemoutput
Allbutstep(3)shouldbedoneinpolynomialtime.
FortheN-queens,ifwerunaSATsolverforn=8,we
willgetbackatruthassignmentwithexactly8ofthe
64atomstrue.
onesuchisthefollowing:
Pll'P25,P3*P46'P53'P72'PM
(thisisthefirstsolutioninleft-to-rightorder)
Fornlargerthan20or30,dpssrunsintodifficulties
Butgsatcansolvetheseforninthethousands.
Y.LiuLogicinComputerScience13/41
SudokupuzzlerrFn
Givenapartiallyfilled9x9
gridT,fillTwithdigitss.t.L7—LLi
I1ri
aeachcolumn,4
aeachrow,L_j
aeachofthenine3x3Kr
sub-grids28
containsallofthedigitsfromLLL6j
1to9.
Y.LiuLogicinComputerScience14/41
EncodingSudokuinSAT
Introduce9x9atoms:sxyzdenotesfilling(x,y)withdigitz
a(x,y)hasbeenfilledwithz:sxyz
aEachgridcanbefilledwithatmostonedigit
Ax=lA?;=1Az=lAc=z+1(「SsyzVF"如)
aEachdigitappearsatleastonceineachcolumn
A:=lAz=lVx=lSxyz
aEachdigitappearsatleastonceineachrow
Ax=l及Z=\V;=lSXyz
aEachdigitappearsatleastonceineach3x3sub-grid
/\i=0A/=0/\x=lAy=lVz=:lS(3e+i)(3j+g)z
□?《閆
室><考,
Y.LiuLogicinComputerScience15/41
Outline
iJSATsolversandapplications
hJProgramverification
,JModelchecking
hJCognitiverobotics
Y.LiuLogicinComputerScience16/41
Amotivatingexample
Socomputestheintegerdivisionofxandy
1.a:=0;
2.b:=x;
3.while(b>=y)do
4.b:=b-y;
5.a:=a+1;
6.od
Howtoensureourselvesthattheprogramiscorrect?
Y.LiuLogicinComputerScience17/41
Hoarelogic
aIn1969,Hoareintroducedanaxiomaticmethodofproving
programcorrectness
aHoareintroducedthenotationof{p}S{(/}(calledHoare
triples),whereSisaprogram,andp,qareformulasina
first-orderlanguage.
aTheintuitivemeaningof{p}S{(/}:ifpholdsbeforethe
executionofSandtheexecutionofSterminates,thenq
holdsafterwards.
Y.LiuLogicinComputerScience18/41
Aproofsystem
」AssignmentAxiom
{pQ/。}立:=t{p},
JCompositionRule
{p}Si{r},{r}S2{q}
{p}5i;52{<?}'
■if-then-elseRule
{p八e}Si{q},{pAf}S?{q}
{p}ifethenS\elseS?fi{q}
.JwhileRule
_______{pAe}S{p}_______
{p}whileedoSod{pA-?e}
hlConsequenceRule
PTPl,{Pl}S{qi},qiTq
{0}S{q},
Y.LiuLogicinComputerScience19/41
Anexampleproof
Wewanttoprove{x>0A>0}S(){Q-y+b=x/\0<b<y}
ByComp,itsufficestoprovethefollowing:
(1){x>Q/\y>0}a:=0]b:=x{a-y+b=x/\0<b}
Cons(3,6)
(3)rr>0A7/>0—>0-?/+rr=3rA0<:r
(4){0①}a:=0{a-y+x=xf\0<x}Assn
(5){a?yx=x/\0<x}b:=x{a-yb=x/\0<b}Assn
(6){0?y+1=①A0W①}a:=0]b:=x{a-y-\-b=x/\0<b}
Comp(4r5)
(2){a-y+b=x/\0<b}whileloop{a-y+b=x/\0<b<y}
Thekeyistofindtheloopinvarianta-yb=x/\0<b
Y.LiuLogicinComputerScience20/41
Anexampleproof(2)
Wenowprove
(2){a-yb=x/\0<b}whileloop{a-y-\-b=x/\0<b<y}
ByWhile,itsufficestoprove
(7){a-y-^-b=x/\0<b/\b>y}
b:=b—y;a:=a+1{a-yh=xf\0<h}Cons(8,ll)
(8)a-y+b=x/\0<b/\b>y—>(a^iyy+b—y=x/\b-y>0
(9){(a+l)-y+6—y=a:A5—y>0}b:=b—y
{(a+l).g+b=i八吐0}Assn
(10){(a+l)-y+b=xA6>0}a:=a+l
{a-y-\-b=x/\b>0}Assn
(11){(a+l)-y+b—y=x/\b-y>0}b:=b—y;a:=a+1
{a'yb=x/\b>0}Comp(9,10)
Y.LiuLogicinComputerScience21/41
Outline
iJSATsolversandapplications
」Programverification
」Modelchecking
hJCognitiverobotics
Y.LiuLogicinComputerScience22/41
Amotivatingexample
aWhenconcurrentprocessessharearesource,wemayneedto
ensurethattheydonothaveaccesstoitatthesametime.
aForexample,wedonotwantseveralprocessestoeditthe
samefileatthesametime.
aWeidentifycertaincriticalsectionsofeachprocess*code,and
ensurethatonlyoneprocesscanbeinitscriticalsectionata
time.
aWewanttofindaprotocolfordeterminingwhichprocessis
allowedtoenteritscriticalsectionatwhichtime.
Y.LiuLogicinComputerScience23/41
Desiredpropertiesoftheprotocol
」Safety:onlyoneprocessisinitscriticalsectionatanytime.
」Liveness:wheneveranyprocessrequeststoenteritscritical
section,itwilleventuallybepermittedtodoso.
」Non-blocking:aprocesscanalwaysrequesttoenterits
criticalsection.
」Nostrictsequencing:processesneednotentertheircritical
sectioninstrictsequence.
Y.LiuLogicinComputerScience24/41
Threecomponentsofaformalverificationtechnique
」Aframeworkformodelingsystems
QAspecificationlanguagefordescribingsystemproperties
」Anautomaticverificationmethodtoestablishwhetherthe
systemmodelsatisfiesthespecification
Y.LiuLogicinComputerScience25/41
Amodelformutualexclusion
Eachprocesshas3states:n(non-criticalstate),
t(tryingtoentercriticalstate),c(criticalstate)
Y.LiuLogicinComputerScience26/41
AtransitionsystemM=(S,—L)
■asetofstatesS
■atransitionrelation—>(abinaryrelationonS)
■foreverys£Shassomes'eSwiths—>s'
■alabelingfunctionL:StP(Atoms)
1OQC
Y.LiuLogicinComputerScience27/41
Unwindingatransitionsystemtoaninfinitetree
Linear-timetemporallogic
a0::=p|-|0|0A歐|X,|F(j)|G(j)|0U歐
apisanypropositionalatom
aXmeans4neXtstate,
aFmeans'someFuturestate1
■Gmeans"allfuturestates(Globally)^
aUmeans'until'
Y.LiuLogicinComputerScience29/41
Branching-timelogic:CTL
.0::=p|w0A@|AX(j)IEX6IAF(I)IEF@\
AG。|EG@|A[(j)U^]|司型
aAmeans4forAllpaths'
aEmeans*thereExistsonepath,
0><&)><復(fù)*<建>>W)AC
Y.LiuLogicinComputerScience30/41
Representingthepropertiesintemporallogic
」Safety:onlyoneprocessisinitscriticalsectionatanytime.
AC2)
口Liveness:wheneveranyprocessrequeststoenteritscritical
section,itwilleventuallybepermittedtodoso.
G(ti—>Fei)AG&2tFC2)
」Non-blocking:Aprocesscanalwaysrequeststoenterits
criticalsection.
4Gdi-EXti)A4Gs2-EXt2)
」Nostrictsequencing:processesneednotentertheircritical
sectioninstrictsequence.
EF?A(->5AE[->C2(7CI])])
Y.LiuLogicinComputerScience31/41
Verifyingtheproperties
9G-|(C1AC2),TfCi)AG2TFc2)
aAG(mtEXti)AAG{n2tEXg)
aEF(c\AE[ciU(-*ciAE[-iC2Uci])]]
Y.LiuLogicinComputerScience32/41
Modelcheckingalgorithms
aCheckwhetheragiventransitionsystemsatisfiesagiven
temporalformula
aLTLandCTLmodelcheckingcanbedoneintime。⑹,
wherenisthesizeofthetransitionsystem
aThestateexplosionproblem:thesizeofthetransitionsystem
isexponentialinthenumberofstatevariables
aApproacheshavebeendevelopedtocombattheproblem
asymbolicmodelchecking
aboundedmodelchecking
aClarke,Emerson,andSifakissharedthe2007TuringAward
fortheirworkonmodelchecking.
Y.LiuLogicinComputerScience33/41
Outline
iJSATsolversandapplications
」Programverification
,JModelchecking
JCognitiverobotics
Y.LiuLogicinComputerScience34/41
Roboticsvs.cognitiverobotics
aRoboticshastraditionallyemphasizedlow-levelsensingand
controltasksincludingsensoryprocessing,pathplanning,and
manipulatordesignandcontrol.
aCognitiveroboticsisconcernedwithendowingrobotsand
softwareagentswithhigherlevelcognitivefunctionsthat
enablethemtoreason,actandperceiveinchanging,
incompletelyknown,andunpredictableenvironments.
aSuchrobotsmust,forexample,beabletoreasonaboutgoals,
actions,whentoperceiveandwhattolookfor,thecognitive
statesofotheragents,etc.
Y.LiuLogicinComputerScience35/41
Cognitiverobotics
aThestudyofknowledgerepresentationandreasoning
problemsfacedbyanautonomousrobot(oragent)ina
dynamicandincompletelyknownworld.
aCentraltothiseffortistodevelopanunderstandingofthe
relationshipbetweentheknowledge,theperception,andthe
actionofsucharobot.
aThegoalishigh-levelroboticcontrol:developasystemthatis
capableofgeneratingactionsintheworldthatareappropriate
asafunctionofsomecurrentsetofbeliefsanddesires.
Y.LiuLogicinComputerScience36/41
Representingadynamicworld:situationcalculus
aActions:puton(x、y)andputonTable(x)
aSituations:S。,do{puton(C,A),So),
aFluents:on(C,D,So),A,do(puton(C^A),So))
aActionpreconditionaxioms:
Poss(puton(x、y),s)=clear(x)Aclear(y\
aSuccessorStateAxioms:
O7z(c,y,do(a,s))三Q=puton(x,y)V
y、s)A->a=putonTable(x)A~^(3z)a=pn,t(m(x,z),
Y.LiuLogicinComputerScience37/41
Twobasicreasoningtasks
LJTh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)潛水活動(dòng)風(fēng)險(xiǎn)免責(zé)協(xié)議
- 2024年智能物流系統(tǒng)解決方案合同
- 2025年度聘請(qǐng)協(xié)議書收藏與管理規(guī)范4篇
- 2025年度校園停車場(chǎng)租賃與管理合同
- 2025年度木材加工企業(yè)安全生產(chǎn)責(zé)任合同-@-1
- 2025年四人合伙投資新能源項(xiàng)目的合伙協(xié)議
- 2025年度耐火材料產(chǎn)品認(rèn)證及質(zhì)量保證合同
- 2025年度互聯(lián)網(wǎng)數(shù)據(jù)中心IDC運(yùn)營承包合同3篇
- 2025年度農(nóng)家樂住宿房裝修工程安全協(xié)議合同
- 2025年家庭寵物撫養(yǎng)權(quán)離婚協(xié)議書標(biāo)準(zhǔn)范本
- 電力智慧檢修安全運(yùn)行三維可視化管理平臺(tái)建設(shè)方案
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)集錦
- 消防安全應(yīng)急預(yù)案下載
- 《北航空氣動(dòng)力學(xué)》課件
- 附件:財(cái)政業(yè)務(wù)基礎(chǔ)數(shù)據(jù)規(guī)范(3.0版)
- 電商公司售后服務(wù)管理制度
- 火災(zāi)應(yīng)急處理課件
- 創(chuàng)新者的逆襲3:新質(zhì)生產(chǎn)力的十八堂案例課-記錄
- 2024年河南省公務(wù)員考試《行測(cè)》真題及答案解析
- 2022-2024北京初三二模英語匯編:話題作文
- 人教版八年級(jí)英語上冊(cè)Unit1-10完形填空閱讀理解專項(xiàng)訓(xùn)練
評(píng)論
0/150
提交評(píng)論