2024屆河北省滄州市普通高中高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第1頁
2024屆河北省滄州市普通高中高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第2頁
2024屆河北省滄州市普通高中高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第3頁
2024屆河北省滄州市普通高中高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第4頁
2024屆河北省滄州市普通高中高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河北省滄州市普通高中高二數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象與的圖象都關(guān)于直線對稱,則與的值分別為()A. B. C. D.2.設(shè)命題,則為()A. B.C. D.3.已知函數(shù)fxA.fx的最小正周期為π,最大值為B.fx的最小正周期為π,最大值為C.fx的最小正周期為2πD.fx的最小正周期為2π4.已知復(fù)數(shù)Z滿足:,則()A. B. C. D.5.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c6.已知隨機(jī)變量服從正態(tài)分布,,則()A. B. C. D.7.由與直線圍成的圖形的面積是()A. B. C. D.98.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)9.已知向量,,且,若實數(shù)滿足不等式,則實數(shù)的取值范圍為()A. B. C. D.10.若,則下列不等式中成立的是()A. B. C. D.11.已知平面向量,的夾角為,且,,則()A. B. C. D.12.直線y=a分別與直線y=2x+2,曲線y=x+lnx交于點A、A.3 B.2 C.324二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z=(i是虛數(shù)單位),則|z|=________.14.加工某種零件需要兩道工序,第一道工序出廢品的概率為0.4,兩道工序都出廢品的概率為0.2,則在第一道工序出廢品的條件下,第二道工序又出廢品的概率為__________.15.曲線在點處的切線方程為_______.16.(N*)展開式中不含的項的系數(shù)和為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在的展開式中,求:(1)第3項的二項式系數(shù)及系數(shù);(2)含的項.18.(12分)如圖所示的幾何,底為菱形,,.平面底面,,,.(1)證明:平面平面;(2)求二面角的正弦值.19.(12分)為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查,得到數(shù)據(jù)如表所示(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):常喝不常喝合計肥胖28不肥胖18合計30(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整;(Ⅱ)是否有99%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.0.0500.0103.8416.635參考數(shù)據(jù):附:20.(12分)在中,角所對的邊分別為且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.21.(12分)將一枚六個面的編號為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后擲兩次,記第一次出的點數(shù)為,第二次出的點數(shù)為,且已知關(guān)于、的方程組.(1)求此方程組有解的概率;(2)若記此方程組的解為,求且的概率.22.(10分)如圖所示,球的表面積為,球心為空間直角坐標(biāo)系的原點,且球分別與軸的正交半軸交于三點,已知球面上一點.(1)求兩點在球上的球面距離;(2)過點作平面的垂線,垂足,求的坐標(biāo),并計算四面體的體積;(3)求平面與平面所成銳二面角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】分析:由題意得,結(jié)合即可求出,同理可得的值.詳解:函數(shù)的圖象與的圖象都關(guān)于直線對稱,和()解得和,和時,;時,.故選:D.點睛:本題主要考查了三角函數(shù)的性質(zhì)應(yīng)用,屬基礎(chǔ)題.2、D【解題分析】分析:根據(jù)全稱命題的否定解答.詳解:由全稱命題的否定得為:,故答案為D.點睛:(1)本題主要考查全稱命題的否定,意在考查學(xué)生對這些知識的掌握水平.(2)全稱命題:,全稱命題的否定():.3、B【解題分析】

首先利用余弦的倍角公式,對函數(shù)解析式進(jìn)行化簡,將解析式化簡為fx=【題目詳解】根據(jù)題意有fx所以函數(shù)fx的最小正周期為T=且最大值為fxmax=【題目點撥】該題考查的是有關(guān)化簡三角函數(shù)解析式,并且通過余弦型函數(shù)的相關(guān)性質(zhì)得到函數(shù)的性質(zhì),在解題的過程中,要注意應(yīng)用余弦倍角公式將式子降次升角,得到最簡結(jié)果.4、B【解題分析】

由復(fù)數(shù)的四則運算法則求出復(fù)數(shù),由復(fù)數(shù)模的計算公式即可得到答案.【題目詳解】因為,則,所以,故選B.【題目點撥】本題考查復(fù)數(shù)的化簡以及復(fù)數(shù)模的計算公式,屬于基礎(chǔ)題.5、A【解題分析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【題目詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【題目點撥】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.6、A【解題分析】由正態(tài)分布的特征得=,選A.7、C【解題分析】分析:先聯(lián)立方程,組成方程組,求得交點坐標(biāo),可得被積區(qū)間,再用定積分表示出y=﹣x2與直線y=2x﹣3的面積,即可求得結(jié)論.詳解:由y=﹣x2與直線y=2x﹣3聯(lián)立,解得y=﹣x2與直線y=2x﹣3的交點為(﹣3,﹣9)和(1,﹣1)因此,y=﹣x2與直線y=2x﹣3圍成的圖形的面積是S==(﹣x3﹣x2+3x)=.故答案為:C.點睛:(1)本題主要考查利用定積分的幾何意義和定積分求面積,意在考查學(xué)生對這些知識的掌握水平.(2)從幾何上看,如果在區(qū)間上函數(shù)連續(xù),且函數(shù)的圖像有一部分在軸上方,有一部分在軸下方,那么定積分表示軸上方的曲邊梯形的面積減去下方的曲邊梯形的面積.8、B【解題分析】

根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍?!绢}目詳解】根據(jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【題目點撥】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。9、A【解題分析】分析:根據(jù),得到,直線的截距為,作出不等式表示的平面區(qū)域,通過平推法確定的取值范圍.詳解:向量,,且,,整理得,轉(zhuǎn)換為直線滿足不等式的平面區(qū)域如圖所示.畫直線,平推直線,確定點A、B分別取得截距的最小值和最大值.易得,分別將點A、B坐標(biāo)代入,得,故選A.點睛:本題主要考查兩向量垂直關(guān)系的應(yīng)用,以及簡單的線性規(guī)劃問題,著重考查了分析問題和解答問題的能力和數(shù)形結(jié)合思想的應(yīng)用.目標(biāo)函數(shù)型線性規(guī)劃問題解題步驟:(1)確定可行區(qū)域(2)將轉(zhuǎn)化為,求z的值,可看做求直線,在y軸上截距的最值.(3)將平移,觀察截距最大(?。┲祵?yīng)的位置,聯(lián)立方程組求點坐標(biāo).(4)將該點坐標(biāo)代入目標(biāo)函數(shù),計算Z.10、A【解題分析】

對于A,用不等式的性質(zhì)可以論證,對于B,C,D,列舉反例,可以判斷.【題目詳解】∵a<0,∴|a|=﹣a,∵a<b<0,∴﹣a>﹣b>0,∴|a|>﹣b,故結(jié)論A成立;取a=﹣2,b=﹣1,則∵,∴B不正確;,∴,∴C不正確;,,∴,∴D不正確.故選:A.【題目點撥】本題考查不等式的性質(zhì),解題的關(guān)鍵是利用不等式的性質(zhì),對于不正確結(jié)論,列舉反例.11、C【解題分析】分析:根據(jù)向量的運算,化簡,由向量的數(shù)量積定義即可求得模長.詳解:平面向量數(shù)量積,所以所以選C點睛:本題考查了向量的數(shù)量積及其模長的求法,關(guān)鍵是理解向量運算的原理,是基礎(chǔ)題.12、D【解題分析】試題分析:設(shè)A(x1,a),B(x2,a),則2(x1+1)=x2+lnx2考點:導(dǎo)數(shù)的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】試題分析:因為,所以所以本題也可利用復(fù)數(shù)模的性質(zhì)進(jìn)行求解,即考點:復(fù)數(shù)的模14、0.5【解題分析】分析:利用條件概率求解.詳解:設(shè)第一道工序出廢品為事件則,第二道工序出廢品為事件,則根據(jù)題意可得,故在第一道工序出廢品的條件下,第二道工序又出廢品的概率即答案為0.5點睛:本題考查條件概率的求法,屬基礎(chǔ)題.15、.【解題分析】

對函數(shù)求導(dǎo)得,把代入得,由點斜式方程得切線方程為.【題目詳解】因為,所以,又切點為,所以在點處的切線方程為.【題目點撥】本題考查運用導(dǎo)數(shù)的幾何意義,求曲線在某點處的切線方程.16、1【解題分析】

先將問題轉(zhuǎn)化為二項展開式的各項系數(shù)和問題,再利用賦值法求出各項系數(shù)和.【題目詳解】要求(n∈N?)展開式中不含y的項,只需令y=0,(N*)展開式中不含的項的系數(shù)和即為展開式的系數(shù)和,令x=1得展開式的各項系數(shù)和為;故答案為:1.【題目點撥】因為二項式定理中的字母可取任意數(shù)或式,所以在解題時根據(jù)題意,給字母賦值,是求解二項展開式各項系數(shù)和的一種重要方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)第3項的系數(shù)為24=240.(2)含x2的項為第2項,且T2=-192x2.【解題分析】試題分析:(1)根據(jù)二項展開式的通項,即可求解第項的二項式系數(shù)及系數(shù);(2)由二項展開式的痛項,可得當(dāng)時,即可得到含的系數(shù).試題解析:(1)第3項的二項式系數(shù)為C=15,又T3=C(2)42=24·Cx,所以第3項的系數(shù)為24C=240.(2)Tk+1=C(2)6-kk=(-1)k26-kCx3-k,令3-k=2,得k=1.所以含x2的項為第2項,且T2=-192x2.18、(1)證明見解析;(2)【解題分析】

(1)推導(dǎo)出,從而平面,進(jìn)而.再由,得平面,推導(dǎo)出,從而平面,由此能證明平面平面;

(2)取中點G,從而平面,以、、所在直線分別為x軸、y軸、z軸的正方向建立如圖所示的空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【題目詳解】解:(1)由題意可知,又因為平面底面,所以平面,從而.因為,所以平面,易得,,,所以,故.又,所以平面.又平面,所以平面平面;(2)取中點G,,相交于點O,連結(jié),易證平面,故、、兩兩垂直,以O(shè)為坐標(biāo)原點,以、、所在直線分別為x軸、y軸、z軸的正方向建立如圖所示的空間直角坐標(biāo)系,則,,,,所以,,.由(1)可得平面的法向量為.設(shè)平面的法向量為,則即令,得,所以.從而,故二面角的正弦值為.【題目點撥】本題考查面面垂直的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.19、(1)見解析;(2)有99%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān).【解題分析】分析:(1)先根據(jù)條件計算常喝碳酸飲料肥胖的學(xué)生人數(shù),再根據(jù)表格關(guān)系填表,(2)根據(jù)卡方公式求,再與參考數(shù)據(jù)比較作判斷.詳解:(1)設(shè)常喝碳酸飲料肥胖的學(xué)生有人,.常喝不常喝合計肥胖628不胖41822合計102030(2)由已知數(shù)據(jù)可求得:因此有99%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān).點睛:本題考查卡方公式以及列聯(lián)表,考查基本求解能力.20、(1);(2).【解題分析】試題分析:(1)在三角形中處理邊角關(guān)系時,一般全部轉(zhuǎn)化為角的關(guān)系,或全部轉(zhuǎn)化為邊的關(guān)系.題中若出現(xiàn)邊的一次式一般采用正弦定理,出現(xiàn)邊的二次式一般采用余弦定理,應(yīng)用正弦、余弦定理時,注意公式變形的應(yīng)用,解決三角形問題時,注意角的限制范圍;(2)在三角形中,注意隱含條件,(3)注意銳角三角形的各角都是銳角.(4)把邊的關(guān)系轉(zhuǎn)化成角,對于求邊的取值范圍很有幫助試題解析:(1)由,得,所以,則,由,。(2)由(1)得,即,又為銳角三角形,故從而.由,所以所以,所以因為所以即考點:余弦定理的變形及化歸思想21、(1);(2).【解題分析】

(1)先根據(jù)方程組有解得關(guān)系,再確定取法種數(shù),最后根據(jù)古典概型概率公式求結(jié)果;(2)先求方程組解,再根據(jù)解的情況得關(guān)系,進(jìn)而確定取法種數(shù),最后根據(jù)古典概型概率公式求結(jié)果.【題目詳解】(1)因為方程組有解,所以而有這三種情況,所以所求概率為;(2)因為且,所以因此即有種情況,所以所求概率為;【題目點撥】本題考查古典概型概率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論