安徽省太和縣聯(lián)考2023年數(shù)學九上期末監(jiān)測試題含解析_第1頁
安徽省太和縣聯(lián)考2023年數(shù)學九上期末監(jiān)測試題含解析_第2頁
安徽省太和縣聯(lián)考2023年數(shù)學九上期末監(jiān)測試題含解析_第3頁
安徽省太和縣聯(lián)考2023年數(shù)學九上期末監(jiān)測試題含解析_第4頁
安徽省太和縣聯(lián)考2023年數(shù)學九上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省太和縣聯(lián)考2023年數(shù)學九上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,D,E,F(xiàn)分別為BC,AB,AC上的點,且EF∥BC,F(xiàn)D∥AB,則下列各式正確的是()A. B. C. D.2.如圖,拋物線交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個結論:①點C的坐標為(0,m);②當m=0時,△ABD是等腰直角三角形;③若a=-1,則b=4;④拋物線上有兩點P(,)和Q(,),若<1<,且+>2,則>.其中結論正確的序號是()A.①② B.①②③ C.①②④ D.②③④3.反比例函數(shù)圖象的一支如圖所示,的面積為2,則該函數(shù)的解析式是()A. B. C. D.4.若二次函數(shù)的圖象如圖,與x軸的一個交點為(1,0),則下列各式中不成立的是()A. B. C. D.5.下列四個幾何體中,主視圖為圓的是()A. B. C. D.6.如圖,四邊形中,,,,設的長為,四邊形的面積為,則與之間的函數(shù)關系式是()A. B. C. D.7.下列說法正確的是()A.“清明時節(jié)雨紛紛”是必然事件B.要了解路邊行人邊步行邊低頭看手機的情況,可采取對在路邊行走的學生隨機發(fā)放問卷的方式進行調查C.做重復試驗:拋擲同一枚瓶蓋1000次,經過統(tǒng)計得“凸面向上”的頻數(shù)為550次,則可以由此估計拋擲這枚瓶蓋出現(xiàn)“凸面向上”的概率為0.55D.射擊運動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.5和1.2,則運動員甲的成績較好8.若反比例函數(shù)的圖象經過點,則這個函數(shù)的圖象一定還經過點()A. B. C. D.9.一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.不能確定10.如果兩個相似三角形對應邊之比是,那么它們的對應中線之比是()A.1:3 B.1:4 C.1:6 D.1:911.如圖,在△ABC中,AB=2.2,BC=3.6,∠B=60°,將△ABC繞點A按逆時針方向旋轉得到△ADE,若點B的對應點D恰好落在BC邊上時,則CD的長為()A.1.5 B.1.4 C.1.3 D.1.212.如圖,一飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的解,則此三角形的周長是_____.14.我國經典數(shù)學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據題意列方程為.15.等腰△ABC的腰長與底邊長分別是方程x2﹣6x+8=0的兩個根,則這個△ABC的周長是_____.16.如圖,點M是反比例函數(shù)()圖象上任意一點,AB⊥y軸于B,點C是x軸上的動點,則△ABC的面積為______.17.如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________.18.方程的根是__________.三、解答題(共78分)19.(8分)2019年12月17日,我國第一艘國產航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測試中,航行至處,觀測指揮塔位于南偏西方向,在沿正南方向以30海里/小時的速度勻速航行2小時后,到達處,再觀測指揮塔位于南偏西方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結果保留根號)20.(8分)如圖,已知直線交于,兩點;是的直徑,點為上一點,且平分,過作,垂足為.(1)求證:為的切線;(2)若,的直徑為10,求的長.21.(8分)如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹標頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.22.(10分)如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.(1)求證:AP是⊙O的切線;(2)求PD的長.23.(10分)2018年高一新生開始,某省全面啟動高考綜合改革,實行“3+1+2”的高考選考方案.“3”是指語文、數(shù)學、外語三科必考;“1”是指從物理、歷史兩科中任選一科參加選考,“2”是指從政治、化學、地理、生物四科中任選兩科參加選考(1)“1+2”的選考方案共有多少種?請直接寫出所有可能的選法;(選法與順序無關,例如:“物、政、化”與“物、化、政”屬于同一種選法)(2)高一學生小明和小杰將參加新高考,他們酷愛歷史和生物,兩人約定必選歷史和生物.他們還需要從政治、化學、地理三科中選一科參考,若這三科被選中的機會均等,請用列表或畫樹狀圖的方法,求出他們恰好都選中政治的概率.24.(10分)如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為多少?25.(12分)已知關于x的一元二次方程mx2-2x+1=0.(1)若方程有兩個實數(shù)根,求m的取值范圍;(2)若方程的兩個實數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.26.關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.(1)求m的取值范圍;(2)若m為正整數(shù),求此方程的根.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據EF∥BC,F(xiàn)D∥AB,可證得四邊形EBDF是平行四邊形,利用平行線分線段成比例逐一驗證選項即可.【詳解】解:∵EF∥BC,F(xiàn)D∥AB,∴四邊形EBDF是平行四邊形,∴BE=DF,EF=BD,∵EF∥BC,∴,,∴,故B錯誤,D正確;∵DF∥AB,∴,,∴,故A錯誤;∵,,故C錯誤;故選:D.【點睛】本題考查了平行四邊形的的判定,平行線分線段成比例的定理,掌握平行線分線段成比例定理是解題的關鍵.2、C【分析】根據二次函數(shù)圖像的基本性質依次進行判斷即可.【詳解】①當x=0時,y=m,∴點C的坐標為(0,m),該項正確;②當m=0時,原函數(shù)解析式為:,此時對稱軸為:,且A點交于原點,∴B點坐標為:(2,0),即AB=2,∴D點坐標為:(1,1),根據勾股定理可得:BD=AD=,∴△ABD為等腰三角形,∵,∴△ABD為等腰直角三角形,該項正確;③由解析式得其對稱軸為:,利用其圖像對稱性,∴當若a=-1,則b=3,該項錯誤;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q點離對稱軸較遠,∴>,該項正確;綜上所述,①②④正確,③錯誤,故選:C.【點睛】本題主要考查了二次函數(shù)圖像解析式與其函數(shù)圖像的性質綜合運用,熟練掌握相關概念是解題關鍵.3、D【分析】根據反比例函數(shù)系數(shù)k的幾何意義,由△POM的面積為2,可知|k|=2,再結合圖象所在的象限,確定k的值,則函數(shù)的解析式即可求出.【詳解】解:△POM的面積為2,S=|k|=2,,又圖象在第四象限,k<0,k=-4,反比例函數(shù)的解析式為:.故選D.【點睛】本題考查了反比例函數(shù)的比例系數(shù)k與其圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即S=|k|.4、B【分析】根據二次函數(shù)圖象開口方向與坐標軸的交點坐標特點,利用排除法可解答.【詳解】解:∵拋物線與x軸有兩個交點,∴,故A正確,不符合題意;∵函數(shù)圖象開口向下,

∴a<0,∵拋物線與y軸正半軸相交,∴c>0,∵拋物線對稱軸在y軸的右側,∴>0,∴b>0,∴abc<0,故B錯誤,符合題意;又∵圖象與x軸的一個交點坐標是(1,0),

∴將點代入二次函數(shù)y=ax2+bx+c得a+b+c=0,故C正確,不符合題意,

∵當x=-1時,y=a-b+c,由函數(shù)圖象可知,y=a-b+c<0,故D正確,不符合題意,

故選:B.【點睛】本題考查二次函數(shù)圖象上點的坐標特征,是基礎題型,也是常考題型.5、C【分析】首先依次判斷每個幾何體的主視圖,然后即可得到答案.【詳解】解:A、主視圖是矩形,B、主視圖是三角形,C、主視圖為圓,D、主視圖是正方形,故選:C.【點睛】本題考查了簡單幾何體的三視圖,熟知這些簡單幾何體的三視圖是解決此類問題的關鍵.6、C【分析】四邊形ABCD圖形不規(guī)則,根據已知條件,將△ABC繞A點逆時針旋轉90°到△ADE的位置,求四邊形ABCD的面積問題轉化為求梯形ACDE的面積問題;根據全等三角形線段之間的關系,結合勾股定理,把梯形上底DE,下底AC,高DF分別用含x的式子表示,可表示四邊形ABCD的面積.【詳解】作AE⊥AC,DE⊥AE,兩線交于E點,作DF⊥AC垂足為F點,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,設BC=a,則DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF1+DF1=CD1,即(3a)1+(4a)1=x1,解得:a=,∴y=S四邊形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a1=x1.故選C.【點睛】本題運用了旋轉法,將求不規(guī)則四邊形面積問題轉化為求梯形的面積,充分運用了全等三角形,勾股定理在解題中的作用.7、C【分析】根據隨機事件的概念、抽樣調查的特點、方差的意義及概率公式分別判斷可得.【詳解】解:A、“清明時節(jié)雨紛紛”是隨機事件,此選項錯誤;B、要了解路邊行人邊步行邊低頭看手機的情況,采取對在路邊行走的學生隨機發(fā)放問卷的方式進行調查不具代表性,此選項錯誤;C、做重復試驗:拋擲同一枚瓶蓋1000次,經過統(tǒng)計得“凸面向上”的頻數(shù)為550次,則可以由此估計拋擲這枚瓶蓋出現(xiàn)“凸面向上”的概率為0.55,正確;D、射擊運動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.5和1.2,則運動員甲的成績較穩(wěn)定,此選項錯誤;8、A【分析】根據反比例函數(shù)的定義,得,分別判斷各點的乘積是否等于,即可得到答案.【詳解】解:∵反比例函數(shù)的圖象經過點,∴;∵,故A符合題意;∵,,,故B、C、D不符合題意;故選:A.【點睛】本題考查了反比例函數(shù)的定義,解題的關鍵是熟記定義,熟練掌握.9、B【分析】根據根的判別式(),求該方程的判別式,根據結果的正負情況即可得到答案.【詳解】解:根據題意得:△=22-4×1×(-1)

=4+4

=8>0,即該方程有兩個不相等的實數(shù)根,

故選:B.【點睛】本題考查了根的判別式.一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.10、A【解析】∵兩個相似三角形對應邊之比是1:3,∴它們的對應中線之比為1:3.故選A.點睛:本題考查相似三角形的性質,相似三角形的對應邊、對應周長,對應高、中線、角平分線的比,都等于相似比,掌握相似三角形的性質及靈活運用它是解題的關鍵.11、B【分析】運用旋轉變換的性質得到AD=AB,進而得到△ABD為等邊三角形,求出BD即可解決問題.【詳解】解:如圖,由題意得:AD=AB,且∠B=60°,∴△ABD為等邊三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故選:B.【點睛】該題主要考查了旋轉變換的性質、等邊三角形的判定等幾何知識點及其應用問題;牢固掌握旋轉變換的性質是解題的關鍵.12、C【解析】利用黑色區(qū)域的面積除以游戲板的面積即可.【詳解】黑色區(qū)域的面積=3×33×12×23×1=4,所以擊中黑色區(qū)域的概率.故選C.【點睛】本題考查了幾何概率:求概率時,已知和未知與幾何有關的就是幾何概率.計算方法是長度比,面積比,體積比等.二、填空題(每題4分,共24分)13、1【分析】先求出方程的兩根,然后根據三角形的三邊關系,得到合題意的邊,進而求得三角形周長即可.【詳解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,當x=2時,2+3<6,不符合三角形的三邊關系定理,所以x=2舍去,當x=4時,符合三角形的三邊關系定理,三角形的周長是3+6+4=1,故答案為:1.【點睛】本題考查了因式分解法解一元二次方程以及三角形的三邊關系,不能盲目地將三邊長相加起來,而應養(yǎng)成檢驗三邊長能否成三角形的好習慣,熟練掌握一元二次方程的解法是解法本題的關鍵.14、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.15、11【詳解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰長與底邊長分別是方程的兩個根,∴當?shù)走呴L和腰長分別為2和4時,滿足三角形三邊關系,此時△ABC的周長為:2+4+4=11;當?shù)走呴L和腰長分別為4和2時,由于2+2=4,不滿足三角形三邊關系,△ABC不存在.∴△ABC的周長=11.故答案是:1116、1【解析】解:設A的坐標是(m,n),則mn=2,則AB=m,△ABC的AB邊上的高等于n,則△ABC的面積=mn=1.故答案為1.點睛:本題主要考查了反比例函數(shù)的系數(shù)k的幾何意義,△ABC的面積=|k|,本知識點是中考的重要考點,同學們應高度關注.17、【分析】作OH⊥AB,延長OH交于E,反向延長OH交CD于G,交于F,連接OA、OB、OC、OD,根據折疊的對稱性及三角形全等,證明AB=CD,又因AB∥CD,所以四邊形ABCD是平行四邊形,由平行四邊形面積公式即可得解.【詳解】如圖,作OH⊥AB,垂足為H,延長OH交于E,反向延長OH交CD于G,交于F,連接OA、OB、OC、OD,則OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,∴OH=HE=,OG=GF=,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG=HB=GD∴AB=CD又∵AB∥CD∴四邊形ABCD是平行四邊形,在Rt△OHA中,由勾股定理得:AH=∴AB=∴四邊形ABCD的面積=AB×GH=.故答案為:.【點睛】本題考查圓中折疊的對稱性及平行四邊形的證明,關鍵是作輔助線,本題也可通過邊、角關系證出四邊形ABCD是矩形.18、【分析】由題意根據直接開平方法的步驟求出x的解即可.【詳解】解:∵,∴x=±2,∴.故答案為:.【點睛】本題考查解一元二次方程-直接開平方法,根據法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”來求解.三、解答題(共78分)19、【分析】過P作PH⊥MN于H,構建直角三角形,設PH=x海里,分別在兩個直角三角形△PHN和△PHM中利用正切函數(shù)表示出NH長和MH長,列方程求解.【詳解】過P作PH⊥MN,垂足為H,設PH=x海里,在Rt△PHN,tan∠PNH=,∴tan45°=,∴NH=,在Rt△PHM中,tan∠PMH=,∴tan30°=,∴MH=,∵MN=30×2=60海里,∴,∴.答:“山東艦”與指揮塔之間的最近距離為海里.【點睛】本題考查解直角三角形的應用,解答此題的關鍵是構建直角三角形,找準線段之間的關系,利用銳角三角函數(shù)進行解答.20、(1)連結OC,證明見詳解,(2)AB=1.【分析】(1)連接OC,根據題意可證得∠CAD+∠DCA=30°,再根據角平分線的性質,得∠DCO=30°,則CD為⊙O的切線;(2)過O作OF⊥AB,則∠OCD=∠CDA=∠OFD=30°,得四邊形OCDF為矩形,設AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(1-x)2=25,從而求得x的值,由勾股定理得出AB的長.【詳解】(1)連接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO為⊙O半徑,∴CD為⊙O的切線;(2)過O作OF⊥AB,垂足為F,∴∠OCD=∠CDA=∠OFD=30°,∴四邊形DCOF為矩形,∴OC=FD,OF=CD.∵DC+DA=1,設AD=x,則OF=CD=1-x,∵⊙O的直徑為10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(1-x)2=25,化簡得x2-11x+18=0,解得x1=2,x2=3.∵CD=1-x大于0,故x=3舍去,∴x=2,從而AD=2,AF=5-2=3,∵OF⊥AB,由垂徑定理知,F(xiàn)為AB的中點,∴AB=2AF=1.【點睛】本題考查切線的證法與弦長問題,涉及切線的判定和性質;.勾股定理;矩形的判定和性質以及垂徑定理的知識,關鍵掌握好這些知識并靈活運用解決問題.21、古塔的高度是.【分析】根據題意即可求出EG、GH和CG,再證出,列出比例式,即可求解.【詳解】解:∵小明、竹桿、古塔均與地面垂直,∴∵小明眼睛離地面,竹桿頂端離地面∴∵∴,∴即解得:∴答:古塔的高度是.【點睛】此題考查的是相似三角形的應用,掌握相似三角形的判定和性質是解決此題的關鍵.22、(1)證明見解析;(2)PD=.【分析】(1)連接OA,由∠B=60°,利用圓周角定理,即可求得∠AOC的度數(shù),又由OA=OC,即可求得∠OAC與∠OCA的度數(shù),利用三角形外角的性質,求得∠AOP的度數(shù),又由AP=AC,利用等邊對等角,求得∠P,則可求得∠PAO=90°,則可證得AP是⊙O的切線.(2)由CD是⊙O的直徑,即可得∠DAC=90°,然后利用三角函數(shù)與等腰三角形的判定定理,即可求得PD的長.【詳解】(1)證明:連接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°.∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=90°.∴OA⊥AP.∴AP是⊙O的切線.(2)解:連接AD.∵CD是⊙O的直徑,∴∠CAD=90°.∴AD=AC?tan30°=3×.∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°.∴∠P=∠PAD.∴PD=AD=.23、(1)共有12種等可能結果,見解析;(2)見解析,他們恰好都選中政治的概率為.【解析】(1)利用樹狀圖可得所有等可能結果;(2)畫樹狀圖展示所有等可能結果,從中找到符合條件的結果數(shù),再根據概率公式求解可得.【詳解】解:(1)畫樹狀圖如下,由樹狀圖知,共有12種等可能結果;(2)畫樹狀圖如下由樹狀圖知,共有9種等可能結果,其中他們恰好都選中政治的只有1種結果,所以他們恰好都選中政治的概率為.【點睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論