




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖南省岳陽臨湘市高三(最后沖刺)數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.若直線與曲線相切,則()A.3 B. C.2 D.4.已知命題,那么為()A. B.C. D.5.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.6.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術也日臻成熟,在全球范圍的能源升級換代行動中體現出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖.根據所給信息,正確的統(tǒng)計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過7.設全集U=R,集合,則()A. B. C. D.8.設為等差數列的前項和,若,則A. B.C. D.9.一小商販準備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數應分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件10.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.11.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變12.把函數的圖象向右平移個單位長度,得到函數的圖象,若函數是偶函數,則實數的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設隨機變量服從正態(tài)分布,若,則的值是______.14.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.15.已知,,則與的夾角為.16.已知函數的圖象在處的切線斜率為,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,側面是菱形,其對角線的交點為,且.(1)求證:平面;(2)設,若直線與平面所成的角為,求二面角的正弦值.18.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.19.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.20.(12分)已知函數()在定義域內有兩個不同的極值點.(1)求實數的取值范圍;(2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數的取值范圍.21.(12分)己知,函數.(1)若,解不等式;(2)若函數,且存在使得成立,求實數的取值范圍.22.(10分)在平面直角坐標系中,曲線(為參數),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.2、D【解析】
根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.3、A【解析】
設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.4、B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.5、C【解析】
根據在關于對稱的區(qū)間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質是解題基礎.隨機變量服從正態(tài)分布,則.6、D【解析】
先列表分析近10年全球風力發(fā)電新增裝機容量,再結合數據研究單調性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現下降趨勢,B錯誤;經計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.7、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.8、C【解析】
根據等差數列的性質可得,即,所以,故選C.9、D【解析】
由題意列出約束條件和目標函數,數形結合即可解決.【詳解】設購買甲、乙兩種商品的件數應分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經過時,最大.故選:D.【點睛】本題考查線性目標函數的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數,是否是非負數,并準確的畫出可行域,本題是一道基礎題.10、A【解析】
設所求切線的方程為,聯立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數的切線方程的求解,考查計算能力,屬于中等題.11、D【解析】
由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題12、A【解析】
先求出的解析式,再求出的解析式,根據三角函數圖象的對稱性可求實數滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數解析式為,故.令,,解得,.因為為偶函數,故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.【點睛】本題考查三角函數的圖象變換以及三角函數的圖象性質,注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數圖象的對稱軸,則有,本題屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質,意在考查學生對該知識的理解掌握水平和分析推理能力.14、【解析】
將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結果.【詳解】將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,則,由勾股定理可得,上述三個等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點睛】本題考查三棱錐外接球表面積的計算,根據三棱錐對棱長相等將三棱錐補成長方體是解答的關鍵,考查推理能力,屬于中等題.15、【解析】
根據已知條件,去括號得:,16、【解析】
先對函數f(x)求導,再根據圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數得,∵函數f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點睛】本題考查了根據曲線上在某點切線方程的斜率求參數的問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)根據菱形的特征和題中條件得到平面,結合線面垂直的定義和判定定理即可證明;
2建立空間直角坐標系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點,,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因為,則在等腰直角三角形中,所以.在中,由得,以為原點,分別以為軸建立空間直角坐標系.則所以設平面的一個法向量為,則,可得,取平面的一個法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉化為求二面角的正弦值,求出后,在中,過點作的垂線,垂足為,連接,則就是所求二面角平面角的補角,先求出,再求出,最后在中求出.)【點睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.18、(1)證明見解析(2)【解析】
(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標系由面,所以面的法向量可取,點,點,點,,,設面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學生的運算能力,在做此類題時,一定要準確寫出點的坐標.19、(1)見解析;(2)【解析】
(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng)和向量法的合理運用,屬于中檔題.20、(1);(2).【解析】
(1)求導得到有兩個不相等實根,令,計算函數單調區(qū)間得到值域,得到答案.(2),是方程的兩根,故,化簡得到,設函數,討論范圍,計算最值得到答案.【詳解】(1)由題可知有兩個不相等的實根,即:有兩個不相等實根,令,,,,;,,故在上單增,在上單減,∴.又,時,;時,,∴,即.(2)由(1)知,,是方程的兩根,∴,則因為在單減,∴,又,∴即,兩邊取對數,并整理得:對恒成立,設,,,當時,對恒成立,∴在上單增,故恒成立,符合題意;當時,,時,∴在上單減,,不符合題意.綜上,.【點睛】本題考查了根據極值點求參數,恒成立問題,意在考查學生的計算能力和綜合應用能力.21、(1);(2)【解析】
(1)零點分段解不等式即可(2)等價于,由,得不等式即可求解【詳解】(1)當時,,當時,由,解得;當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美術館裝修安全合同樣本
- 腎性腦病護理個案
- 2024清遠工貿職業(yè)技術學校工作人員招聘考試及答案
- 2024淶水縣職業(yè)技術教育中心工作人員招聘考試及答案
- 2024湖南省水利水電建設工程學校工作人員招聘考試及答案
- 2024湖北省實驗幼兒師范學校工作人員招聘考試及答案
- 免熏蒸膠合板托盤生產線項目可行性研究報告-立項備案
- 電工基礎考試模擬題(附答案)
- 運動解剖學測試題與答案
- 房屋贖回借款合同書版
- 2024年山東電力中心醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 浙江省四校聯考2023至2024學年高一下學期3月月考化學試題附參考答案(解析)
- 左心衰竭合并肺水腫的護理查房
- 重力壩畢業(yè)設計-水電站混凝土重力壩工程設計
- 國家開放大學《社會心理適應》形考任務1-7參考答案
- 創(chuàng)維公司逃稅案分析
- 《淹溺急救》PPT課件(2022版)
- EPC項目管理之安全文明施工責任制度
- 第二節(jié)模糊綜合評價法
- 《雷鋒叔叔_你在哪里》說課稿55481
- CFM567反推裝置介紹
評論
0/150
提交評論