版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省紹興第一中學(xué)高考數(shù)學(xué)四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知焦點為的拋物線的準(zhǔn)線與軸交于點,點在拋物線上,則當(dāng)取得最大值時,直線的方程為()A.或 B.或 C.或 D.2.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.33.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結(jié)果中最接近真實值的是()A. B. C. D.4.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.5.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-16.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.637.已知等比數(shù)列的各項均為正數(shù),設(shè)其前n項和,若(),則()A.30 B. C. D.628.如圖在直角坐標(biāo)系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點,則它在陰影部分的概率為()A. B. C. D.9.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,10.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.11.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.12.已知隨機(jī)變量的分布列是則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中常數(shù)項是___________.14.設(shè)、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________15.某高校組織學(xué)生辯論賽,六位評委為選手成績打出分?jǐn)?shù)的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.16.已知,則=___________,_____________________________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.18.(12分)已知函數(shù),不等式的解集為.(1)求實數(shù),的值;(2)若,,,求證:.19.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時間(單位:小時).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時間與性別有關(guān)”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87920.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.21.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.22.(10分)貧困人口全面脫貧是全面建成小康社會的標(biāo)志性指標(biāo).黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機(jī)制”對當(dāng)前和下一個階段的扶貧工作進(jìn)行了前瞻性的部署,即2020年要通過精準(zhǔn)扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標(biāo).為了響應(yīng)黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進(jìn)行指導(dǎo),經(jīng)調(diào)查知,在一個銷售季度內(nèi),每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計,兩市場以往100個銷售周期該產(chǎn)品的市場需求量的頻數(shù)分布如下表:市場:需求量(噸)90100110頻數(shù)205030市場:需求量(噸)90100110頻數(shù)106030把市場需求量的頻率視為需求量的概率,設(shè)該廠在下個銷售周期內(nèi)生產(chǎn)噸該產(chǎn)品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據(jù),確定下個銷售周期內(nèi)生產(chǎn)量噸還是噸?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時與拋物線相切,再用判別式或?qū)?shù)計算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.2、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個數(shù),綜合①②③得解.【詳解】①當(dāng)時,,滿足題意,②當(dāng)時,,,,,故不恒成立,③當(dāng)時,設(shè),,令,得,,得,下面考查方程的解的個數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.3、B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學(xué)生的分析問題的能力,屬于基礎(chǔ)題.4、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.5、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.6、B【解析】
根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.7、B【解析】
根據(jù),分別令,結(jié)合等比數(shù)列的通項公式,得到關(guān)于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數(shù)列前n項和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數(shù)列的通項公式和前n項和公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.8、A【解析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.9、B【解析】
分別求出兩個隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機(jī)變量的分布列的計算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識求出隨機(jī)變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.10、C【解析】
由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當(dāng)且僅當(dāng)時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.11、C【解析】
利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價轉(zhuǎn)化.12、C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識的考查.二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.14、【解析】
由橢圓的標(biāo)準(zhǔn)方程,求出焦點的坐標(biāo),寫出直線方程,與橢圓方程聯(lián)立,求出弦長,利用定義可得,進(jìn)而求出?!驹斀狻坑芍?,焦點,所以直線:,代入得,即,設(shè),,故由定義有,,所以?!军c睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質(zhì)、以及直線與橢圓位置關(guān)系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運(yùn)算。15、【解析】
先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個數(shù)為83,85,87,95,且這四個數(shù)的平均數(shù),這四個數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點睛】本題主要考查莖葉圖的識別和統(tǒng)計量的計算,側(cè)重考查數(shù)據(jù)分析和數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值為;極小值為;(2)見解析【解析】
(1)對函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域為,,所以當(dāng)時,;當(dāng)時,,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因為,所以,又,則,因為,且在上單調(diào)遞減,所以,故.【點睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.18、(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時等號成立.故,即.【點睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.19、(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時間與性別有關(guān).【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計算,利用表格數(shù)據(jù)對比判斷即可【詳解】(1)因為男生人數(shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時間超過2小時的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數(shù)為37人,聯(lián)表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555100因為3.892>3.841,所以有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時間與性別有關(guān).【點睛】本題考查分層抽樣,獨立性檢驗,熟記公式,正確計算是關(guān)鍵,屬于中檔題.20、(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長,進(jìn)而由三角形的面積公式求得三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中 食品 課程設(shè)計
- 2024年學(xué)年學(xué)校安全工作計劃
- 揚(yáng)塵專項施工方案
- 路肩拆除施工方案
- 2024石榴產(chǎn)業(yè)鏈上下游企業(yè)戰(zhàn)略合作合同3篇
- 課程設(shè)計折疊桌椅
- 2025年度文化創(chuàng)意產(chǎn)業(yè)項目投資合同4篇
- 年度梅酒競爭策略分析報告
- 洗輪機(jī)施工方案
- 2025年度鐵路機(jī)車車輛維修與維護(hù)服務(wù)協(xié)議4篇
- (二統(tǒng))大理州2025屆高中畢業(yè)生第二次復(fù)習(xí)統(tǒng)一檢測 物理試卷(含答案)
- 口腔執(zhí)業(yè)醫(yī)師定期考核試題(資料)帶答案
- 2024人教版高中英語語境記單詞【語境記單詞】新人教版 選擇性必修第2冊
- 能源管理總結(jié)報告
- 充電樁巡查記錄表
- 阻燃材料的阻燃機(jī)理建模
- CJT 511-2017 鑄鐵檢查井蓋
- 配電工作組配電網(wǎng)集中型饋線自動化技術(shù)規(guī)范編制說明
- 2024高考物理全國乙卷押題含解析
- 介入科圍手術(shù)期護(hù)理
- 青光眼術(shù)后護(hù)理課件
評論
0/150
提交評論