版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省福安市一中高考考前模擬數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.關(guān)于函數(shù),有下列三個(gè)結(jié)論:①是的一個(gè)周期;②在上單調(diào)遞增;③的值域?yàn)?則上述結(jié)論中,正確的個(gè)數(shù)為()A. B. C. D.2.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.53.已知雙曲線C:()的左、右焦點(diǎn)分別為,過(guò)的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.4.已知數(shù)列的前n項(xiàng)和為,,且對(duì)于任意,滿足,則()A. B. C. D.5.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.7.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.8.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.9.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.10.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函數(shù),關(guān)于x的方程f(x)=a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)12.若函數(shù)為自然對(duì)數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果橢圓的對(duì)稱軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在x軸上,且=,那么橢圓的方程是.14.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為_(kāi)_______.15.直線過(guò)圓的圓心,則的最小值是_____.16.已知向量,,若,則實(shí)數(shù)______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知,(Ⅰ)求的大?。唬á颍┤?,求面積的最大值.18.(12分)已知矩陣,.求矩陣;求矩陣的特征值.19.(12分)如圖,三棱錐中,點(diǎn),分別為,的中點(diǎn),且平面平面.求證:平面;若,,求證:平面平面.20.(12分)一酒企為擴(kuò)大生產(chǎn)規(guī)模,決定新建一個(gè)底面為長(zhǎng)方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個(gè)無(wú)蓋長(zhǎng)方體發(fā)酵池,其底面為長(zhǎng)方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價(jià)分別為200元和150元,發(fā)酵池造價(jià)總費(fèi)用不超過(guò)65400元(1)求發(fā)酵池邊長(zhǎng)的范圍;(2)在建發(fā)酵館時(shí),發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問(wèn):發(fā)酵池的邊長(zhǎng)如何設(shè)計(jì),可使得發(fā)酵館占地面積最小.21.(12分)在邊長(zhǎng)為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.22.(10分)已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動(dòng)點(diǎn)C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用三角函數(shù)的性質(zhì),逐個(gè)判斷即可求出.【詳解】①因?yàn)?,所以是的一個(gè)周期,①正確;②因?yàn)?,,所以在上不單調(diào)遞增,②錯(cuò)誤;③因?yàn)?,所以是偶函?shù),又是的一個(gè)周期,所以可以只考慮時(shí),的值域.當(dāng)時(shí),,在上單調(diào)遞增,所以,的值域?yàn)?,③錯(cuò)誤;綜上,正確的個(gè)數(shù)只有一個(gè),故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.2、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.3、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.4、D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.5、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點(diǎn)睛】本題考查充分性與必要性,簡(jiǎn)單三角方程的解法,屬于基礎(chǔ)題.6、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.7、C【解析】
根據(jù)在關(guān)于對(duì)稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.8、B【解析】
先辨別出圖象中實(shí)線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對(duì)應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個(gè)極值點(diǎn),但其導(dǎo)函數(shù)圖象(實(shí)線)與軸有三個(gè)交點(diǎn),不合乎題意;若實(shí)線部分為函數(shù)的圖象,則該函數(shù)有兩個(gè)極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個(gè)交點(diǎn),合乎題意.對(duì)函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.9、A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.10、B【解析】
化簡(jiǎn)復(fù)數(shù),由它是純虛數(shù),求得,從而確定對(duì)應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對(duì)應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.11、D【解析】
原問(wèn)題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對(duì)g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時(shí),g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個(gè)不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問(wèn)題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問(wèn)題轉(zhuǎn)化為通過(guò)導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問(wèn)題.12、B【解析】
求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號(hào)零點(diǎn).由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號(hào)零點(diǎn),令,則,令,則問(wèn)題即在上有零點(diǎn),由于在上遞增,所以的取值范圍是.故選:B【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點(diǎn)問(wèn)題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可設(shè)橢圓方程為:∵短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在軸上∴又,∴,∴橢圓的方程為,故答案為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識(shí).14、【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.15、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時(shí)取等號(hào).∴則的最小值是4.故答案為:4.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.16、-2【解析】
根據(jù)向量坐標(biāo)運(yùn)算可求得,根據(jù)平行關(guān)系可構(gòu)造方程求得結(jié)果.【詳解】由題意得:,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,關(guān)鍵是能夠利用平行關(guān)系構(gòu)造出方程.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
分析:(1)利用正弦定理以及誘導(dǎo)公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運(yùn)用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計(jì)算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點(diǎn),則,在中,,(注:也可將兩邊平方)即,,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).此時(shí),其最大值為.點(diǎn)睛:該題考查的是有關(guān)三角形的問(wèn)題,涉及到的知識(shí)點(diǎn)有正弦定理,誘導(dǎo)公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過(guò)程中,需要正確使用相關(guān)的公式進(jìn)行運(yùn)算即可求得結(jié)果.18、;,.【解析】
由題意,可得,利用矩陣的知識(shí)求解即可.矩陣的特征多項(xiàng)式為,令,求出矩陣的特征值.【詳解】設(shè)矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項(xiàng)式為,令,解得,,即矩陣的兩個(gè)特征值為,.【點(diǎn)睛】本題考查矩陣的知識(shí)點(diǎn),屬于??碱}.19、證明見(jiàn)解析;證明見(jiàn)解析.【解析】
利用線面平行的判定定理求證即可;為中點(diǎn),為中點(diǎn),可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點(diǎn),為中點(diǎn),,又平面,平面,平面;證明:為中點(diǎn),為中點(diǎn),,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點(diǎn)睛】本題考查線面平行和面面垂直的判定定理的應(yīng)用,屬于基礎(chǔ)題.20、(1)(2)當(dāng)時(shí),,米時(shí),發(fā)酵館的占地面積最小;當(dāng)時(shí),時(shí),發(fā)酵館的占地面積最?。划?dāng)時(shí),米時(shí),發(fā)酵館的占地面積最小.【解析】
(1)設(shè)米,總費(fèi)用為,解即可得解;(2)結(jié)合(1)可得占地面積結(jié)合導(dǎo)函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設(shè)米,則米,由題意知:,得,設(shè)總費(fèi)用為,則,解得:,又,故,所以發(fā)酵池邊長(zhǎng)的范圍是不小于15米,且不超過(guò)25米;(2)設(shè)發(fā)酵館的占地面積為由(1)知:,①時(shí),,在上遞增,則,即米時(shí),發(fā)酵館的占地面積最??;②時(shí),,在上遞減,則,即米時(shí),發(fā)酵館的占地面積最??;③時(shí),時(shí),,遞減;時(shí),遞增,因此,即時(shí),發(fā)酵館的占地面積最??;綜上所述:當(dāng)時(shí),,米時(shí),發(fā)酵館的占地面積最小;當(dāng)時(shí),時(shí),發(fā)酵館的占地面積最??;當(dāng)時(shí),米時(shí),發(fā)酵館的占地面積最小.【點(diǎn)睛】此題考查函數(shù)模型的應(yīng)用,關(guān)鍵在于根據(jù)題意恰當(dāng)?shù)亟⒛P?,利用函?shù)性質(zhì)討論最值取得的情況.21、(1)平行,證明見(jiàn)解析;(2).【解析】
(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點(diǎn)睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年油田工程技術(shù)服務(wù)項(xiàng)目融資計(jì)劃書
- 2024秋新滬科版物理八年級(jí)上冊(cè)教學(xué)課件 第五章 質(zhì)量 第三節(jié) 密度
- 機(jī)械原理考試題
- 養(yǎng)老院老人生活?yuàn)蕵?lè)活動(dòng)組織人員職業(yè)道德制度
- 養(yǎng)老院老人健康管理制度
- 《就業(yè)中國(guó)演講》課件
- 《金地格林世界提案》課件
- 提前預(yù)支工資合同
- 2024事業(yè)單位保密協(xié)議范本與保密工作考核3篇
- 2024年度離婚協(xié)議書詳述財(cái)產(chǎn)分配與子女撫養(yǎng)細(xì)節(jié)及責(zé)任2篇
- 統(tǒng)計(jì)信號(hào)分析知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋哈爾濱工程大學(xué)
- 2025年中考道德與法治一輪教材復(fù)習(xí)-九年級(jí)下冊(cè)-第一單元 我們共同的世界
- 【MOOC】中國(guó)電影經(jīng)典影片鑒賞-北京師范大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 【MOOC】中藥藥理學(xué)-學(xué)做自己的調(diào)理師-暨南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 陜西省西安市長(zhǎng)安區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期中地理試卷
- 企業(yè)破產(chǎn)律師服務(wù)協(xié)議
- 浙江省2023年1月學(xué)業(yè)考試物理物理試題(解析版)
- 智慧傳承-黎族船型屋智慧樹(shù)知到期末考試答案章節(jié)答案2024年海南師范大學(xué)
- 配位化學(xué)-本科生版智慧樹(shù)知到答案章節(jié)測(cè)試2023年蘭州大學(xué)
- 《下肢深靜脈血栓》PPT課件
- 食堂承包合作方案策劃書
評(píng)論
0/150
提交評(píng)論