版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河南省鶴壁高中高三考前熱身數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,直三棱柱的高為4,底面邊長(zhǎng)分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.6422.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種3.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是()A. B. C.16 D.324.已知是虛數(shù)單位,則()A. B. C. D.5.設(shè)集合,集合,則=()A. B. C. D.R6.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.7.如圖所示,三國(guó)時(shí)代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個(gè)全等的直角三角形及一個(gè)小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計(jì),?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1088.已知,,由程序框圖輸出的為()A.1 B.0 C. D.9.某幾何體的三視圖如圖所示,則該幾何體中的最長(zhǎng)棱長(zhǎng)為()A. B. C. D.10.已知雙曲線的一條漸近線經(jīng)過(guò)圓的圓心,則雙曲線的離心率為()A. B. C. D.211.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.1412.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱(chēng)點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若非零向量,滿足,,,則______.14.在中,已知,,是邊的垂直平分線上的一點(diǎn),則__________.15.已知一組數(shù)據(jù),1,0,,的方差為10,則________16.正項(xiàng)等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時(shí)的值為_(kāi)____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,VO⊥平面ABCD,E是棱VC的中點(diǎn).(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.18.(12分)如圖,在四邊形中,,,.(1)求的長(zhǎng);(2)若的面積為6,求的值.19.(12分)已知函數(shù),.(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時(shí),的最大值為,求證:.20.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)年,山東省高考將全面實(shí)行“選”的模式(即:語(yǔ)文、數(shù)學(xué)、外語(yǔ)為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對(duì)物理學(xué)科的喜好程度,某高中從高一年級(jí)學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計(jì)顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對(duì)選科的認(rèn)識(shí),年級(jí)決定召開(kāi)學(xué)生座談會(huì).現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會(huì),記參加座談會(huì)的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.22.(10分)已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知?jiǎng)又本€l過(guò)右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問(wèn)題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問(wèn)題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c2、C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰有3類(lèi)排法,再考慮兩者的順序,有種,剩余的3門(mén)全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門(mén)全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.3、A【解析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長(zhǎng)為4,所以體積是,選A.4、B【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.5、D【解析】試題分析:由題,,,選D考點(diǎn):集合的運(yùn)算6、D【解析】
首先判斷循環(huán)結(jié)構(gòu)類(lèi)型,得到判斷框內(nèi)的語(yǔ)句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語(yǔ)句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語(yǔ)句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問(wèn)題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問(wèn)題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.7、B【解析】
根據(jù)幾何概型的概率公式求出對(duì)應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長(zhǎng)為1,則小直角三角形的邊長(zhǎng)為,
則小正方形的邊長(zhǎng)為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點(diǎn)睛】本題主要考查幾何概型的概率的應(yīng)用,求出對(duì)應(yīng)的面積之比是解決本題的關(guān)鍵.8、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點(diǎn):1、程序框圖;2、定積分.9、C【解析】
根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過(guò)S作,連接BD,,再求得其它的棱長(zhǎng)比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過(guò)S作,連接BD,則,所以,,,,該幾何體中的最長(zhǎng)棱長(zhǎng)為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.10、B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點(diǎn)睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.11、A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.12、D【解析】
由題可知,可轉(zhuǎn)化為曲線與有兩個(gè)公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱(chēng)點(diǎn)在上,即曲線與有兩個(gè)公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí)取得極大值,也即為最大值,當(dāng)時(shí),;當(dāng)時(shí),,所以滿足條件.故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)向量的模長(zhǎng)公式以及數(shù)量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點(diǎn)睛】本題主要考查了向量的數(shù)量積公式以及模長(zhǎng)公式的應(yīng)用,屬于中檔題.14、【解析】
作出圖形,設(shè)點(diǎn)為線段的中點(diǎn),可得出且,進(jìn)而可計(jì)算出的值.【詳解】設(shè)點(diǎn)為線段的中點(diǎn),則,,,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的計(jì)算,涉及平面向量數(shù)量積運(yùn)算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計(jì)算能力,屬于中等題.15、7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點(diǎn)睛】本題主要考查方差公式的應(yīng)用.16、2【解析】
先由題意列出關(guān)于的方程,求得的通項(xiàng)公式,再表示出即可求解.【詳解】解:設(shè)公比為,且,時(shí),上式有最小值,故答案為:2.【點(diǎn)睛】本題考查等比數(shù)列、等差數(shù)列的有關(guān)性質(zhì)以及等比數(shù)列求積、求最值的有關(guān)運(yùn)算,中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)連結(jié)OE,證明VA∥OE得到答案.(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.【詳解】(1)連結(jié)OE.因?yàn)榈酌鍭BCD是菱形,所以O(shè)為AC的中點(diǎn),又因?yàn)镋是棱VC的中點(diǎn),所以VA∥OE,又因?yàn)镺E?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因?yàn)閂O⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因?yàn)榈酌鍭BCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因?yàn)锽D?平面BDE,所以平面VAC⊥平面BDE.【點(diǎn)睛】本題考查了線面平行,面面垂直,意在考查學(xué)生的推斷能力和空間想象能力.18、(1)(2)【解析】
(1)利用余弦定理可得的長(zhǎng);(2)利用面積得出,結(jié)合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時(shí)一般選用正弦定理,已知邊較多時(shí)一般選用余弦定理.19、(Ⅰ)(Ⅱ)見(jiàn)解析;(Ⅲ)見(jiàn)解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點(diǎn)斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當(dāng)時(shí),在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,令,即(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),由的單調(diào)性可得在上的最小值是(iii)當(dāng),即時(shí),在上單調(diào)遞減,在上的最小值是(Ⅲ)當(dāng)時(shí),令,則是單調(diào)遞減函數(shù).因?yàn)椋?,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時(shí),取得最大值是因?yàn)?,所以由此可證試題解析:(Ⅰ)因?yàn)楹瘮?shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因?yàn)楹瘮?shù),所以(1)當(dāng)時(shí),,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,所以令,即,所以(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當(dāng),即時(shí),在上單調(diào)遞減,所以在上的最小值是綜上所述,當(dāng)時(shí),在上的最小值是當(dāng)時(shí),在上的最小值是當(dāng)時(shí),在上的最小值是(Ⅲ)因?yàn)楹瘮?shù),所以所以當(dāng)時(shí),令,所以是單調(diào)遞減函數(shù).因?yàn)椋?,所以在上存在,使得,即所以?dāng)時(shí),;當(dāng)時(shí),即當(dāng)時(shí),;當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時(shí),取得最大值是因?yàn)?,所以因?yàn)?,所以所?0、(1)證明見(jiàn)解析;(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項(xiàng)公式.然后利用累加法求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)位相減求和法求得數(shù)列的前項(xiàng)和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,,①,②①-②可得,則即.【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項(xiàng)公式,考查錯(cuò)位相減求和法,屬于中檔題.21、(1)有的把握認(rèn)為喜歡物理與性別有關(guān);(2)分布列見(jiàn)解析,.【解析】
(1)根據(jù)題目所給信息,列出列聯(lián)表,計(jì)算的觀測(cè)值,對(duì)照臨界值表可得出結(jié)論;(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《園林樹(shù)木》課程標(biāo)準(zhǔn)
- 2BizBoxERP用戶基礎(chǔ)手冊(cè)
- 三角形的翻折課件
- 第1單元 古代亞非文明(高頻選擇題50題)(原卷版)
- 2024年農(nóng)業(yè)和農(nóng)村檔案工作總結(jié)
- 七年級(jí)下《保護(hù)野生動(dòng)物》蘇教版-課件
- 農(nóng)業(yè)科創(chuàng):研發(fā)力量展示
- 機(jī)場(chǎng)服務(wù)行業(yè)銷(xiāo)售工作總結(jié)
- 資金借貸合同個(gè)人醫(yī)療保健費(fèi)用貸款支出租賃保險(xiǎn)三篇
- 初一生物教學(xué)工作總結(jié)實(shí)踐探索培養(yǎng)動(dòng)手能力
- 2024年血透管路行業(yè)技術(shù)趨勢(shì)分析
- 美術(shù)年終總結(jié)匯報(bào)
- 數(shù)字孿生技術(shù)與MES系統(tǒng)的融合
- 人才梯隊(duì)(人才庫(kù)、人才盤(pán)點(diǎn))建設(shè)方案
- 廣西柳州市2023-2024學(xué)年四年級(jí)上學(xué)期期末考試語(yǔ)文試卷
- 《芯片制造工藝》課件
- 中山大學(xué)研究生中特考試大題
- 手術(shù)室護(hù)理實(shí)踐指南術(shù)中低體溫預(yù)防
- 鋼管混凝土柱計(jì)算
- 四川省成都市2022-2023學(xué)年六年級(jí)上學(xué)期語(yǔ)文期末考試試卷(含答案)5
- 違規(guī)建筑綜合整頓行動(dòng)方案(二篇)
評(píng)論
0/150
提交評(píng)論