河北省秦皇島盧龍縣聯(lián)考2023-2024學年九年級數(shù)學第一學期期末考試試題含解析_第1頁
河北省秦皇島盧龍縣聯(lián)考2023-2024學年九年級數(shù)學第一學期期末考試試題含解析_第2頁
河北省秦皇島盧龍縣聯(lián)考2023-2024學年九年級數(shù)學第一學期期末考試試題含解析_第3頁
河北省秦皇島盧龍縣聯(lián)考2023-2024學年九年級數(shù)學第一學期期末考試試題含解析_第4頁
河北省秦皇島盧龍縣聯(lián)考2023-2024學年九年級數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省秦皇島盧龍縣聯(lián)考2023-2024學年九年級數(shù)學第一學期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABC內有邊長分別為a,b,c的三個正方形.則a、b、c滿足的關系式是()A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c2.下列說法正確的是().A.“購買1張彩票就中獎”是不可能事件B.“概率為0.0001的事件”是不可能事件C.“任意畫一個三角形,它的內角和等于180°”是必然事件D.任意擲一枚質地均勻的硬幣10次,正面向上的一定是5次3.拋物線y=x2+2x+m﹣1與x軸有兩個不同的交點,則m的取值范圍是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣24.天虹商場一月份鞋帽專柜的營業(yè)額為100萬元,三月份鞋帽專柜的營業(yè)額為150萬元.設一到三月每月平均增長率為x,則下列方程正確的是()A.100(1+2x)=150 B.100(1+x)2=150C.100(1+x)+100(1+x)2=150 D.100+100(1+x)+100(1+x)2=1505.在△ABC中,I是內心,∠BIC=130°,則∠A的度數(shù)是()A.40° B.50° C.65° D.80°6.如圖,要測量小河兩岸相對兩點、寬度,可以在小河邊的垂線上取一點,則得,,則小河的寬等于()A. B. C. D.7.如圖,?ABCD的對角線AC,BD相交于點O,且AC=10,BD=12,CD=m,那么m的取值范圍是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<118.書架上放著三本古典名著和兩本外國小說,小明從中隨機抽取兩本,兩本都是古典名著的概率是()A. B. C. D.9.如圖,在△ABC中,D,E分別是AB和AC上的點,且DE∥BC,,DE=6,則BC的長為()A.8 B.9 C.10 D.1210.如圖所示,在中,,,,則長為()A. B. C. D.11.若△ABC∽△DEF,且△ABC與△DEF的面積比是,則△ABC與△DEF對應中線的比為()A. B. C. D.12.已知反比例函數(shù)y=(k>0)的圖象經過點A(1,a)、B(3,b),則a與b的關系正確的是()A.a=b B.a=﹣b C.a<b D.a>b二、填空題(每題4分,共24分)13.從﹣2,﹣1,1,2四個數(shù)中任取兩數(shù),分別記為a、b,則關于x的不等式組有解的概率是_____.14.如圖,直角三角形的直角頂點在坐標原點,,若點在反比例函數(shù)的圖象上,則經過點的反比例函數(shù)解析式為___;15.已知函數(shù)y=kx2﹣2x+1的圖象與x軸只有一個有交點,則k的值為_____.16.已知a是方程2x2﹣x﹣4=0的一個根,則代數(shù)式4a2﹣2a+1的值為_____.17.若m是關于x的方程x2-2x-3=0的解,則代數(shù)式4m-2m2+2的值是______.18.在中,,,則______.三、解答題(共78分)19.(8分)已知點在二次函數(shù)的圖象上,且當時,函數(shù)有最小值1.(1)求這個二次函數(shù)的表達式.(1)如果兩個不同的點,也在這個函數(shù)的圖象上,求的值.20.(8分)如圖,已知直線與軸、軸分別交于點與雙曲線分別交于點,且點的坐標為.(1)分別求出直線、雙曲線的函數(shù)表達式;(2)求出點的坐標;(3)利用函數(shù)圖像直接寫出:當在什么范圍內取值時.21.(8分)已知:△ABC內接于⊙O,過點A作直線EF.(1)如圖甲,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(寫出兩種情況,不需要證明):①或②;(2)如圖乙,AB是非直徑的弦,若∠CAF=∠B,求證:EF是⊙O的切線.(3)如圖乙,若EF是⊙O的切線,CA平分∠BAF,求證:OC⊥AB.22.(10分)已知:在平面直角坐標系中,的三個頂點的坐標分別為,,.(1)畫出關于原點成中心對稱的,并寫出點的坐標;(2)畫出將繞點按順時針旋轉所得的.23.(10分)學了一元二次方程的根與系數(shù)的關系后,小亮興奮地說:“若設一元二次方程的兩個根為,由根與系數(shù)的關系有,,由此就能快速求出,,···的值了.比如設是方程的兩個根,則,,得.小亮的說法對嗎?簡要說明理由;寫一個你最喜歡的元二次方程,并求出兩根的平方和;已知是關于的方程的一個根,求方程的另一個根與的值.24.(10分)如圖,在中,,,,P是BC上一動點,過P作AP的垂線交CD于E,將翻折得到,延長FP交AB于H,連結AE,PE交AC于G.(1)求證;(2)當時,求AE的長;(3)當時,求AG的長.25.(12分)如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以點O為圓心,OB為半徑作圓,過點C作CD∥AB交⊙O于點D,連接BD(1)猜想AC與⊙O的位置關系,并證明你的猜想;(2)試判斷四邊形BOCD的形狀,并證明你的判斷;(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.26.如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).(1)求拋物線的解析式和直線AD的解析式;(2)過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【分析】利用解直角三角形知識.在邊長為a和b兩正方形上方的兩直角三角形中由正切可得,化簡得b=a+c,故選A.【詳解】請在此輸入詳解!2、C【解析】試題解析:A.“購買1張彩票就中獎”是不可能事件,錯誤;B.“概率為0.0001的事件”是不可能事件,錯誤;C.“任意畫一個三角形,它的內角和等于180°”是必然事件,正確;D.任意擲一枚質地均勻的硬幣10次,正面向上的一定是5次,錯誤.故選C.3、A【解析】試題分析:由題意知拋物線y=x2+2x+m﹣1與x軸有兩個交點,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案選A.考點:拋物線與x軸的交點.4、B【分析】可設每月營業(yè)額平均增長率為x,則二月份的營業(yè)額是100(1+x),三月份的營業(yè)額是100(1+x)(1+x),則可以得到方程即可.【詳解】設二、三兩個月每月的平均增長率是x.根據(jù)題意得:100(1+x)1=150,故選:B.【點睛】本題考查數(shù)量平均變化率問題.原來的數(shù)量為a,平均每次增長或降低的百分率為x的話,經過第一次調整,就調整到a×(1±x),再經過第二次調整就是a(1±x)(1±x)=a(1±x)1.增長用“+”,下降用“-”.5、D【解析】試題分析:已知∠BIC=130°,則根據(jù)三角形內角和定理可知∠IBC+∠ICB=50°,則得到∠ABC+∠ACB=100度,則本題易解.解:∵∠BIC=130°,∴∠IBC+∠ICB=50°,又∵I是內心即I是三角形三個內角平分線的交點,∴∠ABC+∠ACB=100°,∴∠A=80°.故選D.考點:三角形內角和定理;角平分線的定義.6、C【分析】利用∠ABC的正切函數(shù)求解即可.【詳解】解:∵AC⊥CD,,,∴小河寬AC=BC·tan∠ABC=100tan50°(m).?故選C.【點睛】本題考查了解直角三角形的應用,解決此問題的關鍵在于正確理解題意得基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.7、D【分析】先根據(jù)平行四邊形的性質,可得出OD、OC的長,再根據(jù)三角形三邊長關系得出m的取值范圍.【詳解】∵四邊形ABCD是平行四邊形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故選:D.【點睛】本題考查平行四邊形的性質和三角形三邊長關系,解題關鍵是利用平行四邊形的性質,得出OC和OD的長.8、C【分析】畫樹狀圖(用A、B、C表示三本古典名著,a、b表示兩本外國小說)展示所有20種等可能的結果數(shù),找出從中隨機抽取2本都是古典名著的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:(用A、B、C表示三本古典名著,a、b表示兩本外國小說),共有20種等可能的結果數(shù),其中從中隨機抽取2本都是古典名著的結果數(shù)為6,所以從中隨機抽取2本都是古典名著的概率=.故選:C.【點睛】本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.9、C【解析】根據(jù)相似三角形的性質可得,再根據(jù),DE=6,即可得出,進而得到BC長.【詳解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故選:C.【點睛】本題主要考查了相似三角形的判定與性質的運用,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.10、B【分析】先根據(jù)同角的三角函數(shù)值的關系得出,解出AC=5,再根據(jù)勾股定理得出AB的值.【詳解】在中,,,,即.又AC=5===3.故選B.【點睛】本題考查了三角函數(shù)的值,熟練掌握同角的三角函數(shù)的關系是解題的關鍵.11、D【分析】根據(jù)相似三角形的面積比等于相似比的平方,再結合相似三角形的對應中線的比等于相似比解答即可.【詳解】∵△ABC∽△DEF,△ABC與△DEF的面積比是,∴△ABC與△DEF的相似比為,∴△ABC與△DEF對應中線的比為,故選D.【點睛】考查的是相似三角形的性質,相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方;相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.12、D【分析】對于反比例函數(shù)(k≠0)而言,當k>0時,作為該函數(shù)圖象的雙曲線的兩支應該在第一和第三象限內.由點A與點B的橫坐標可知,點A與點B應該在第一象限內,然后根據(jù)反比例函數(shù)增減性分析問題.【詳解】解:∵點A的坐標為(1,a),點B的坐標為(3,b),∴與點A對應的自變量x值為1,與點B對應的自變量x值為3,∵當k>0時,在第一象限內y隨x的增大而減小,又∵1<3,即點A對應的x值小于點B對應的x值,∴點A對應的y值大于點B對應的y值,即a>b故選D【點睛】本題考查反比例函數(shù)的圖像性質,利用數(shù)形結合思想解題是關鍵.二、填空題(每題4分,共24分)13、.【分析】根據(jù)關于x的不等式組有解,得出b≤x≤a+1,根據(jù)題意列出樹狀圖得出所有等情況數(shù)和關于x的不等式組有解的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:∵關于x的不等式組有解,∴b≤x≤a+1,根據(jù)題意畫圖如下:共有12種等情況數(shù),其中關于x的不等式組有解的情況分別是,,,,,,,,共8種,則有解的概率是;故答案為:.【點睛】本題考查了不等式組的解和用列舉法求概率,熟練掌握并靈活運用是解題的關鍵.14、【解析】構造K字型相似模型,直接利用相似三角形的判定與性質得出,而由反比例性質可知S△AOD==3,即可得出答案.【詳解】解:過點B作BC⊥x軸于點C,過點A作AD⊥x軸于點D,

∵∠BOA=90°,

∴∠BOC+∠AOD=90°,

∵∠AOD+∠OAD=90°,

∴∠BOC=∠OAD,

又∵∠BCO=∠ADO=90°,

∴△BCO∽△ODA,

∴,

∴,∴S△BCO=S△AOD

∵S△AOD===3,∴S△BCO=×3=1∵經過點B的反比例函數(shù)圖象在第二象限,

故反比例函數(shù)解析式為:y=.

故答案為.【點睛】此題主要考查了相似三角形的判定與性質以及反比例函數(shù)數(shù)的性質,正確得出S△BOC=1是解題關鍵.15、0或1.【分析】當k=0時,函數(shù)為一次函數(shù),滿足條件;當k≠0時,利用判別式的意義得到當△=0時拋物線與x軸只有一個交點,求出此時k的值即可.【詳解】當k=0時,函數(shù)解析式為y=﹣2x+1,此一次函數(shù)與x軸只有一個交點;當k≠0時,△=(﹣2)2﹣4k=0,解得k=1,此時拋物線與x軸只有一個交點,綜上所述,k的值為0或1.故答案為0或1.【點睛】本題考查了拋物線與x軸的交點問題,注意要分情況討論.16、1【分析】直接把a的值代入得出2a2?a=4,進而將原式變形得出答案.【詳解】∵a是方程2x2=x+4的一個根,∴2a2﹣a=4,∴4a2﹣2a+1=2(2a2﹣a)+1=2×4+1=1.故答案為1.【點睛】此題主要考查了一元二次方程的解,正確將原式變形是解題關鍵.17、-1【分析】先由方程的解的含義,得出m2-2m-3=0,變形得m2-2m=3,再將要求的代數(shù)式提取公因式-2,然后將m2-2m=3代入,計算即可.【詳解】解:∵m是關于x的方程x2-2x-3=0的解,

∴m2-2m-3=0,

∴m2-2m=3,

∴1m-2m2+2

=-2(m2-2m)+2

=-2×3+2

=-1.

故答案為:-1.【點睛】本題考查了利用一元二次方程的解的含義在代數(shù)式求值中的應用,明確一元二次方程的解的含義并將要求的代數(shù)式正確變形是解題的關鍵.18、【分析】根據(jù)題意畫出圖形,進而得出cosB=求出即可.【詳解】解:∵∠A=90°,AB=3,BC=4,

則cosB==.

故答案為:.【點睛】本題考查了銳角三角函數(shù)的定義,正確把握銳角三角函數(shù)關系是解題的關鍵.三、解答題(共78分)19、(1);(1)【分析】(1)把點代入可得c的值,再將點代入,與對稱軸等于1聯(lián)立,即可求解;(1)易知點,縱坐標相同,即其關于對稱軸對稱,即可求解.【詳解】解:(1)把點代入,可得,∵當時,函數(shù)有最小值1,∴,解得,∴二次函數(shù)解析式為;(1)∵點,縱坐標相同,∴點,關于二次函數(shù)圖象的對稱軸對稱,∴,即.【點睛】本題考查二次函數(shù)的性質、求二次函數(shù)解析式,掌握二次函數(shù)的對稱性是解題的關鍵.20、(1),;(2)D;(3).【分析】(1)把代入得到的值,把代入雙曲線得到的值;(2)把一次函數(shù)和反比例函數(shù)的解析式聯(lián)立方程,解方程即可求得;(3)直線圖象在雙曲線上方的部分時的值,即為時的取值范圍.【詳解】解:(1)把點代入,得:,直線的解析式;把點代入,得:,雙曲線的解析式;(2)解得,,點的坐標為;(3),的坐標為,觀察圖形可知:當時,的取值范圍為:.【點睛】本題考查了反比例函數(shù)與一次函數(shù)圖象的交點問題:把兩函數(shù)的解析式聯(lián)立起來組成方程組,解方程組即可得到它們的交點坐標.也考查了數(shù)形結合的思想,利用數(shù)形結合解決取值范圍的問題,是非常有效的方法.21、(1)①OA⊥EF;②∠FAC=∠B;(2)見解析;(3)見解析.【分析】(1)添加條件是:①OA⊥EF或∠FAC=∠B根據(jù)切線的判定和圓周角定理推出即可.(2)作直徑AM,連接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根據(jù)切線的判定推出即可.(3)由同圓的半徑相等得到OA=OB,所以點O在AB的垂直平分線上,根據(jù)∠FAC=∠B,∠BAC=∠FAC,等量代換得到∠BAC=∠B,所以點C在AB的垂直平分線上,得到OC垂直平分AB.【詳解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半徑,∴EF是⊙O切線,②∵AB是⊙0直徑,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半徑,∴EF是⊙O切線,故答案為:OA⊥EF或∠FAC=∠B,(2)作直徑AM,連接CM,即∠B=∠M(在同圓或等圓中,同弧所對的圓周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直徑,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半徑,∴EF是⊙O的切線.(3)∵OA=OB,∴點O在AB的垂直平分線上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴點C在AB的垂直平分線上,∴OC垂直平分AB,∴OC⊥AB.【點睛】本題考查了切線的判定,圓周角定理,三角形的內角和定理等知識點,注意:經過半徑的外端且垂直于半徑的直線是圓的切線,直徑所對的圓周角是直角.22、(1)如圖所示,即為所求,見解析,點的坐標為;(2)如圖所示,即為所求.見解析.【解析】分別作出三頂點關于原點的對稱點,再順次連接即可得;

分別作出點、繞點按順時針旋轉所得的對應點,再順次連接即可得.【詳解】解:(1)如圖所示,即為所求,其中點的坐標為.(2)如圖所示,即為所求.【點睛】此題主要考查了圖形的旋轉變換,正確得出對應點位置是解題關鍵.23、(1)小亮的說法不對,理由見解析;(1)方程:,兩根平方和為37;(3)c=1,另一根為.【分析】(1)一般情況下可以這樣計算、x11+x11的值,但是若有一根為零時,就無法計算的值了;(1)寫出一個有實數(shù)根的一元二次方程,根據(jù),計算即可;(3)把代入原方程,求出c的值,再根據(jù)即可求出另一根的值.【詳解】(1)小亮的說法不對.若有一根為零,就無法計算的值了,因為零作除數(shù)無意義.(1)所喜歡的一元二次方程.設方程的兩個根分別是為,,,.又,∴;(3)把代入原方程,得:.解得:.∵,∴.【點睛】本題考查了根與系數(shù)的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1,x1x1,反過來也成立,即(x1+x1),x1x1.24、(1)見解析;(2);(3)【分析】(1)先證明P、C、F共線,由余角的性質可證,根據(jù)等角對等邊證明,再由余角的性質證明和等角對等邊證明,結論可證;(2)過A作于M,由勾股定理可求BC=4,然后求出MP的長,再由勾股定理求出AP的長,由是等腰直角三角形可求出AE的長;(3)通過證明,可得,由外角的性質可求出∠PAF=F=22.5°,再根據(jù)角的和差和三角形內角和定理證明,然后求出,然后通過證明,利用相似三角形的對應邊成比例即可求解.【詳解】(1)∵四邊形ABCD是平行四邊形,,∴,∴,又∵,∴,,故F在AC的延長線上.又,,而,∴,而,∴,∴,又,,∴,∴,∴,(2)過A作于M,∵,,∴BC=4,∴,,又∵,∴BP=3,CP=,∴,∴,由(1)知AP=AE,∴是等腰直角三角形,∴;(3)由,且得,∴,∴,∴,∴,∴,∵,∴,而∴,∴,∴,∴,∴.【點睛】本題考查了平行四邊形的性質,余角的性質,等腰三角形的判定與性質,三角形外角的性質,勾股定理,以及相似三角形的判定與性質,熟練掌握相似三角形的判定與性質是解答本題的關鍵.25、(1)猜想:AC與⊙O相切;(2)四邊形BOCD為菱形;(3)【解析】(1)根據(jù)等腰三角形的性質得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根據(jù)切線的判定定理即可得到,AC是⊙O的切線;(2)連結OD,由CD∥AB得到∠AOC=∠OCD,根據(jù)三角形外角性質得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判斷△OCD為等邊三角形,則CD=OB=OC,先可判斷四邊形OBDC為平行四邊形,加上OB=OC,于是可判斷四邊形BOCD為菱形;(3)在Rt△AOC中,根據(jù)含30度的直角三角形三邊的關系得到OC=,再根據(jù)弧長公式計算出弧BC的弧長=然后根據(jù)圓錐的計算求圓錐的底面圓半徑.【詳解】(1)AC與⊙O相切,∠ACB=120°,∴∠ABC=∠A=3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論