下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第4講空間向量與距離、探究性問題[考情分析]1.以空間幾何體為載體,考查利用向量方法求空間中點(diǎn)到直線以及點(diǎn)到平面的距離,屬于中等難度.2.以空間向量為工具,探究空間幾何體中線、面的位置關(guān)系或空間角存在的條件,計(jì)算量較大,一般以解答題的形式考查,難度中等偏上.考點(diǎn)一空間距離核心提煉(1)點(diǎn)到直線的距離直線l的單位方向向量為u,A是直線l上的任一點(diǎn),P為直線l外一點(diǎn),設(shè)eq\o(AP,\s\up6(→))=a,則點(diǎn)P到直線l的距離d=eq\r(a2-a·u2).(2)點(diǎn)到平面的距離平面α的法向量為n,A是平面α內(nèi)任一點(diǎn),P為平面α外一點(diǎn),則點(diǎn)P到平面α的距離為d=eq\f(|\o(AP,\s\up6(→))·n|,|n|).考向1點(diǎn)到直線的距離例1(1)(2023·溫州模擬)四面體OABC滿足∠AOB=∠BOC=∠COA=90°,OA=1,OB=2,OC=3,點(diǎn)D在棱OC上,且OC=3OD,點(diǎn)G為△ABC的重心,則點(diǎn)G到直線AD的距離為()A.eq\f(\r(2),2) B.eq\f(1,2)C.eq\f(\r(3),3) D.eq\f(1,3)(2)(2023·北京模擬)如圖,已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則線段AD1上的動(dòng)點(diǎn)P到直線A1C1距離的最小值為()A.1 B.eq\f(\r(2),2)C.eq\f(\r(6),4) D.eq\f(\r(3),3)考向2點(diǎn)到平面的距離例2(1)(2023·武漢模擬)如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEC1F所截得到的,其中AB=4,BC=2,CC1=3,BE=1,則點(diǎn)C到平面AEC1F的距離為()A.eq\f(\r(2),2) B.eq\f(3\r(2),2)C.eq\f(4\r(33),11) D.eq\f(\r(33),11)(2)已知正方形ABCD的邊長(zhǎng)為1,PD⊥平面ABCD,且PD=1,E,F(xiàn)分別為AB,BC的中點(diǎn),則直線AC到平面PEF的距離為()A.2 B.eq\f(\r(17),17)C.eq\f(\r(3),3) D.eq\r(5)規(guī)律方法(1)求點(diǎn)到平面的距離有兩種方法,一是利用空間向量點(diǎn)到平面的距離公式,二是利用等體積法.(2)求直線到平面的距離的前提是直線與平面平行.求直線到平面的距離可轉(zhuǎn)化成直線上任一點(diǎn)到平面的距離.跟蹤演練1(2023·大連模擬)如圖,已知ABCD-A1B1C1D1是底面邊長(zhǎng)為1的正四棱柱,O1為A1C1與B1D1的交點(diǎn).(1)若點(diǎn)C到平面AB1D1的距離為eq\f(4,3),求正四棱柱ABCD-A1B1C1D1的高;(2)在(1)的條件下,若E是AB1的中點(diǎn),求點(diǎn)E到直線A1C1的距離.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考點(diǎn)二空間中的探究性問題核心提煉與空間向量有關(guān)的探究性問題主要有兩類:一類是探究線面的位置關(guān)系;另一類是探究線面角或兩平面的夾角滿足特定要求時(shí)的存在性問題.處理原則:先建立空間直角坐標(biāo)系,引入?yún)?shù)(有些是題中已給出),設(shè)出關(guān)鍵點(diǎn)的坐標(biāo),然后探究這樣的點(diǎn)是否存在,或參數(shù)是否滿足要求,從而作出判斷.例3(2023·許昌模擬)如圖,四棱錐P-ABCD的底面ABCD為菱形,平面PAD⊥平面ABCD,∠BAD=60°,PA=PD=eq\r(5),AB=2,M為PC上一點(diǎn),且eq\o(PM,\s\up6(→))=3eq\o(MC,\s\up6(→)).(1)求異面直線AP與DM所成角的余弦值;(2)在棱PB上是否存在點(diǎn)N,使得AN∥平面BDM?若存在,求eq\f(PN,PB)的值;若不存在,請(qǐng)說明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法解決立體幾何中探索性問題的基本方法(1)通常假設(shè)問題中的數(shù)學(xué)對(duì)象存在或結(jié)論成立,再在這個(gè)前提下進(jìn)行推理,如果能推出與條件吻合的數(shù)據(jù)或事實(shí),說明假設(shè)成立,并可進(jìn)一步證明,否則假設(shè)不成立.(2)探索線段上是否存在滿足條件的點(diǎn)時(shí),一定注意三點(diǎn)共線的條件的應(yīng)用.跟蹤演練2(2023·咸陽模擬)如圖,三棱柱ABC-A1B1C1的側(cè)面BB1C1C是邊長(zhǎng)為1的正方形,平面BB1C1C⊥平面AA1B1B,AB=4,∠A1B1B=60°,G是A1B1的中點(diǎn).(1)求證:平面GBC⊥平面BB1C1C;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)在線段BC上是否存在一點(diǎn)P,使得二面角P-GB1-B的平面角為30°?若存在,求BP的長(zhǎng);若不存在,請(qǐng)說明理由.______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木門及木飾面產(chǎn)品綠色認(rèn)證與質(zhì)量監(jiān)督合同4篇
- 2025版實(shí)驗(yàn)室科研項(xiàng)目管理與科技獎(jiǎng)勵(lì)服務(wù)合同3篇
- 二零二五年度關(guān)聯(lián)方間信貸資產(chǎn)轉(zhuǎn)讓合同規(guī)范文本3篇
- 2025版協(xié)議離婚手續(xù)辦理指南及離婚證獲取要領(lǐng)3篇
- KTV營(yíng)業(yè)權(quán)轉(zhuǎn)讓及經(jīng)營(yíng)合同版B版
- 二零二五版租賃房屋租賃保證金利息計(jì)算合同3篇
- 2025年度零投入的股權(quán)代持解除與轉(zhuǎn)讓協(xié)議
- 2025年針對(duì)普通員工的競(jìng)業(yè)限制合同范本
- 二零二五年度智慧農(nóng)業(yè)版電路租用與物聯(lián)網(wǎng)應(yīng)用合同
- 二零二五年度數(shù)據(jù)中心運(yùn)維用工服務(wù)協(xié)議
- 2024年1月高考適應(yīng)性測(cè)試“九省聯(lián)考”英語 試題(學(xué)生版+解析版)
- 《朝天子·詠喇叭-王磐》核心素養(yǎng)目標(biāo)教學(xué)設(shè)計(jì)、教材分析與教學(xué)反思-2023-2024學(xué)年初中語文統(tǒng)編版
- 成長(zhǎng)小說智慧樹知到期末考試答案2024年
- 紅色革命故事《王二小的故事》
- 海洋工程用高性能建筑鋼材的研發(fā)
- 英語48個(gè)國(guó)際音標(biāo)課件(單詞帶聲、附有聲國(guó)際音標(biāo)圖)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫(kù)安全管理制度
- 2023同等學(xué)力申碩統(tǒng)考英語考試真題
- 家具安裝工培訓(xùn)教案優(yōu)質(zhì)資料
- 在雙減政策下小學(xué)音樂社團(tuán)活動(dòng)有效開展及策略 論文
評(píng)論
0/150
提交評(píng)論