2024屆上海市崇明縣名校數(shù)學(xué)八下期末考試模擬試題含解析_第1頁
2024屆上海市崇明縣名校數(shù)學(xué)八下期末考試模擬試題含解析_第2頁
2024屆上海市崇明縣名校數(shù)學(xué)八下期末考試模擬試題含解析_第3頁
2024屆上海市崇明縣名校數(shù)學(xué)八下期末考試模擬試題含解析_第4頁
2024屆上海市崇明縣名校數(shù)學(xué)八下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆上海市崇明縣名校數(shù)學(xué)八下期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,已知一次函數(shù)的圖象與軸交于點,則根據(jù)圖象可得不等式的解集是()A. B. C. D.2.如圖,直線y=ax+b(a≠0)過點A(0,4),B(-3,0),則方程ax+b=0的解是()A.x=-3 B.x=4 C.x= D.x=3.如圖四邊形是菱形,頂點在軸上,,點在第一象限,且菱形的面積為,坐標(biāo)為,則頂點的坐標(biāo)為()A. B. C. D.4.點P(2,3)到y(tǒng)軸的距離是()A.3 B.2 C.1 D.05.解不等式,解題依據(jù)錯誤的是()解:①去分母,得5(x+2)<3(2x﹣1)②去括號,得5x+10<6x﹣3③移項,得5x﹣6x<﹣3﹣10④合并同類項,得﹣x<﹣13⑤系數(shù)化1,得x>13A.②去括號法則 B.③不等式的基本性質(zhì)1C.④合并同類項法則 D.⑤不等式的基本性質(zhì)26.如圖,直線的解析式為,直線的解析式為,則不等式的解集是()A. B. C. D.7.若分式有意義,則滿足的條件是()A. B. C. D.8.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點P為斜邊AB上一動點,過點P作PE⊥AC于E,PF⊥BC于點F,連結(jié)EF,則線段EF的最小值為()A.24B.C.D.59.下列關(guān)系式中,不是函數(shù)關(guān)系的是()A.y=-x(x<0) B.y=±x(x>0) C.y=x(x>0) D.y=﹣x(x>0)10.已知點P(a,m),Q(b,n)是反比例函數(shù)y圖象上兩個不同的點,則下列說法不正確的是()A.a(chǎn)m=2 B.若a+b=0,則m+n=0C.若b=3a,則nm D.若a<b,則m>n二、填空題(每小題3分,共24分)11.在矩形ABCD中,AB=2,AD=3,點P是BC上的一個動點,連接AP、DP,則AP+DP的最小值為_____.12.如圖,在Rt△ABC中,∠B=90°,AB=6,BC=8,點D在線段BC上一動點,以AC為對角線的平行四邊形ADCE中,則DE的最小值是______.13.如圖,在△ABC中,BD,CE分別是邊AC,AB上的中線,BD與CE相交于點O,則CE與EO之間的數(shù)量關(guān)系是_____.14.在中,,,,則__________.15.如圖,是六邊形的一個內(nèi)角.若,則的度數(shù)為________.16.實驗中學(xué)規(guī)定學(xué)生學(xué)期的數(shù)學(xué)成績滿分為120分,其中平時成績占20%,期中考試成績占30%,期末考試成績占50%,王玲的三項成績依次是100分,90分,106分,那么王玲這學(xué)期的數(shù)學(xué)成績?yōu)開____分.17.函數(shù)的自變量x的取值范圍是______.18.如圖①,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B.圖②是點F運動時,△FBC的面積y(cm)隨時間x(s)變化的關(guān)系圖象,則a的值是__三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射線BD為∠ABC的平分線,交AC于點D.動點P以每秒2個單位長度的速度從點B向終點C運動.作PE⊥BC交射線BD于點E.以PE為邊向右作正方形PEFG.正方形PEFG與△BDC重疊部分圖形的面積為S.(1)求tan∠ABD的值.(2)當(dāng)點F落在AC邊上時,求t的值.(3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時,求S與t之間的函數(shù)關(guān)系式.20.(6分)在一次社會調(diào)查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數(shù),記錄如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:步數(shù)分組統(tǒng)計表組別步數(shù)分組頻數(shù)A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n請根據(jù)以上信息解答下列問題:(1)填空:m=______,n=______;(2)補全頻數(shù)發(fā)布直方圖;(3)這20名“健步走運動”團隊成員一天行走步數(shù)的中位數(shù)落在______組;(4)若該團隊共有120人,請估計其中一天行走步數(shù)不少于7500步的人數(shù).21.(6分)如圖,BD為平行四邊形ABCD的對角線,按要求完成下列各題.(1)用直尺和圓規(guī)作出對角線BD的垂直平分線交AD于點E,交BC于點F,垂足為O,(保留作圖痕跡,不要求寫作法)(2)在(1)的基礎(chǔ)上,連接BE和DF,求證:四邊形BFDE是菱形.22.(8分)為了推動陽光體育運動的廣泛開展,引導(dǎo)學(xué)生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運動鞋供學(xué)生借用,現(xiàn)從各年的隨機抽取了部分學(xué)生的鞋號,繪制了統(tǒng)計圖A和圖B,請根據(jù)相關(guān)信息,解答下列問題:(1)本次隨機抽樣的學(xué)生數(shù)是多少?A中值是多少?(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?23.(8分)淮安日報社為了了解市民“獲取新聞的主要途徑”,開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖三種不完整的統(tǒng)計圖表.請根據(jù)圖表信息解答下列問題:(1)統(tǒng)計表中的m=,n=;(2)并請補全條形統(tǒng)計圖;(3)若該市約有80萬人,請你估計其中將“電腦上網(wǎng)”和“手機上網(wǎng)”作為“獲取新聞的主要途徑”的總?cè)藬?shù).24.(8分)在學(xué)習(xí)一元一次不等式與一次函數(shù)中,小明在同一個坐標(biāo)系中分別作出了一次函數(shù)和的圖象,分別與x軸交于點A、B,兩直線交于點C.已知點,,觀察圖象并回答下列問題:(1)關(guān)于x的方程的解是______;關(guān)于x的不等式的解集是______;(2)直接寫出關(guān)于x的不等式組的解集;(3)若點,求關(guān)于x的不等式的解集和△ABC的面積.25.(10分)已知,在四邊形ABCD中,點E、點F分別為AD、BC的中點,連接EF.(1)如圖1,AB∥CD,連接AF并延長交DC的延長線于點G,則AB、CD、EF之間的數(shù)量關(guān)系為;(2)如圖2,∠B=90°,∠C=150°,求AB、CD、EF之間的數(shù)量關(guān)系?(3)如圖3,∠ABC=∠BCD=45°,連接AC、BD交于點O,連接OE,若AB=,CD=2,BC=6,則OE=.26.(10分)如圖,在△ABC中,∠ACB=90°,且DE是△ABC的中位線.延長ED到F,使DF=ED,連接FC,F(xiàn)B.回答下列問題:(1)試說明四邊形BECF是菱形.(2)當(dāng)?shù)拇笮M足什么條件時,菱形BECF是正方形?請回答并證明你的結(jié)論.

參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】

,即,從圖象可以看出,當(dāng)時,,即可求解.【題目詳解】解:,即,從圖象可以看出,當(dāng)時,,故選:.【題目點撥】本題考查了一次函數(shù)與一元一次不等式,體現(xiàn)了數(shù)形結(jié)合的思想方法,準(zhǔn)確的確定出的值,是解答本題的關(guān)鍵.2、A【解題分析】

根據(jù)所求方程的解,即為函數(shù)y=ax+b圖象與x軸交點橫坐標(biāo),確定出解即可.【題目詳解】方程ax+b=0的解,即為函數(shù)y=ax+b圖象與x軸交點的橫坐標(biāo),

∵直線y=ax+b過B(-3,0),

∴方程ax+b=0的解是x=-3,

故選A.【題目點撥】本題考查了一次函數(shù)與一元一次方程,任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點的橫坐標(biāo)的值.3、C【解題分析】

過點C作x軸的垂線,垂足為E,由面積可求得CE的長,在Rt△BCE中可求得BE的長,可求得AE,結(jié)合A點坐標(biāo)可求得AO,可求出OE,可求得C點坐標(biāo).【題目詳解】如圖,過點C作x軸的垂線,垂足為E,∵S菱形ABCD=20,∴AB?CE=20,即5CE=20,∴CE=4,在Rt△BCE中,BC=AB=5,CE=4,∴BE=3,∴AE=AB+BE=5+3=8.又∵A(?2,0),∴OA=2,∴OE=AE?OA=8?2=6,∴C(6,4),故選C.【題目點撥】此題考查菱形的性質(zhì),坐標(biāo)與圖形性質(zhì),解題關(guān)鍵在于作輔助線4、B【解題分析】

根據(jù)點的到y(tǒng)軸的距離等于橫坐標(biāo)的絕對值解答.【題目詳解】解:點P(1,3)到y(tǒng)軸的距離為1.故選:B.【題目點撥】本題考查了點的坐標(biāo),熟記點的到y(tǒng)軸的距離等于橫坐標(biāo)的絕對值,到x軸的距離等于縱坐標(biāo)的絕對值是解題的關(guān)鍵.5、D【解題分析】

根據(jù)題目中的解答步驟可以寫出各步的依據(jù),從而可以解答本題.【題目詳解】解:由題目中的解答步驟可知,②去括號法則,故選項A正確,③不等式的基本性質(zhì)1,故選項B正確,④合并同類項法則,故選項C正確,⑤不等式的基本性質(zhì)3,故選項D錯誤,故選D.【題目點撥】本題考查解一元一次不等式,解答本題的關(guān)鍵是明確解一元一次不等式的方法.6、D【解題分析】

由圖象可以知道,當(dāng)x=m時,兩個函數(shù)的函數(shù)值是相等的,再根據(jù)函數(shù)的增減性可以判斷出不等式解集.【題目詳解】不等式對應(yīng)的函數(shù)圖象是直線在直線“下方”的那一部分,其對應(yīng)的的取值范圍,構(gòu)成該不等式的解集.所以,解集應(yīng)為,直線過這點,把代入易得,.故選:D.【題目點撥】此題考查一次函數(shù)與一元一次不等式,解題關(guān)鍵在于結(jié)合函數(shù)圖象進行解答.7、B【解題分析】

根據(jù)分式有意義的條件可得x+1≠0,再解即可.【題目詳解】解:由題意得:x+1≠0,

解得:x≠-1

故選B.【題目點撥】本題主要考查了分式有意義的條件,關(guān)鍵是掌握分式有意義的條件是分母不等于零.8、C【解題分析】

連接PC,當(dāng)CP⊥AB時,PC最小,利用三角形面積解答即可.【題目詳解】解:連接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四邊形ECFP是矩形,∴EF=PC,∴當(dāng)PC最小時,EF也最小,即當(dāng)CP⊥AB時,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值為:=4.1.∴線段EF長的最小值為4.1.故選C.【題目點撥】本題主要考查的是矩形的判定與性質(zhì),關(guān)鍵是根據(jù)矩形的性質(zhì)和三角形的面積公式解答.9、B【解題分析】

根據(jù)函數(shù)的概念可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應(yīng)關(guān)系,據(jù)此即可得出答案.【題目詳解】解:A、當(dāng)x<0時,對于x的每一個值,y=-x都有唯一確定的值,所以y=-x(x<B、當(dāng)x>0時,對于x的每一個值,y=±x有兩個互為相反數(shù)的值,而不是唯一確定的值,所以y=±x(x>0)不是函數(shù);C、當(dāng)x>0時,對于x的每一個值,y=x都有唯一確定的值,所以y=-x(x>0D、當(dāng)x>0時,對于x的每一個值,y=-x都有唯一確定的值,所以y=--x(x>0故選B.【題目點撥】此題主要考查了函數(shù)的概念.函數(shù)的概念:在一個變化過程中,有兩個變量x,y,對于x的每一個取值,y都有唯一確定的值與之對應(yīng),則y是x的函數(shù),x叫自變量.10、D【解題分析】

根據(jù)題意得:am=bn=2,將B,C選項代入可判斷,根據(jù)反比例函數(shù)圖象的性質(zhì)可直接判斷D是錯誤的.【題目詳解】∵點P(a,m),Q(b,n)是反比例函數(shù)y圖象上兩個不同的點,∴am=bn=2,若a+b=0,則a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴nm,故A,B,C正確,若a<0<b,則m<0,n>0,∴m<n,故D是錯誤的,故選D.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,關(guān)鍵是靈活運用反比例函數(shù)圖象的性質(zhì)解決問題.二、填空題(每小題3分,共24分)11、1【解題分析】

作點D關(guān)于BC的對稱點D',連接AD',PD',依據(jù)AP+DP=AP+PD'≥AD',即可得到AP+DP的最小值等于AD'的長,利用勾股定理求得AD'=1,即可得到AP+DP的最小值為1.【題目詳解】解:如圖,作點D關(guān)于BC的對稱點D',連接AD',PD',則DD'=2DC=2AB=4,PD=PD',∵AP+DP=AP+PD'≥AD',∴AP+DP的最小值等于AD'的長,∵Rt△ADD'中,AD'===1,∴AP+DP的最小值為1,故答案為:1.【題目點撥】本題考查的是最短線路問題及矩形的性質(zhì),熟知兩點之間線段最短的知識是解答此題的關(guān)鍵.12、1【解題分析】

平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【題目詳解】解:平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最?。?/p>

∵OD⊥BC,BC⊥AB,

∴OD∥AB,

又∵OC=OA,

∴OD是△ABC的中位線,

∴OD=AB=3,

∴DE=2OD=1.

故答案為:1.【題目點撥】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半,正確理解DE最小的條件是關(guān)鍵.13、CE=3EO【解題分析】

根據(jù)三角形的中位線得出DE=BC,DE∥BC,根據(jù)相似三角形的判定得出△DOE∽△BOC,根據(jù)相似三角形的性質(zhì)求出CO=2EO即可.【題目詳解】.解:CE=3EO,理由是:連接DE,∵在△ABC中,BD,CE分別是邊AC,AB上的中線,∴DE=BC,DE∥BC,∴△DOE∽△BOC,∴=,∴CO=2EO,∴CE=3EO,故答案為:CE=3EO.【題目點撥】.本題考查了三角形的中位線定理和相似三角形的性質(zhì)和判定,能求出DE=BC和△DOE∽△BOC是解此題的關(guān)鍵.14、1【解題分析】

根據(jù)直角三角形中,30°所對的直角邊是斜邊的一半進行計算.【題目詳解】∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,

∴AB=1BC=1.

故答案為:1.【題目點撥】此題考查直角三角形的性質(zhì),解題關(guān)鍵在于掌握30°所對的直角邊是斜邊的一半.15、【解題分析】

根據(jù)多邊形的內(nèi)角和=(n-2)x180求出六邊形的內(nèi)角和,把∠E=120°代入,即可求出答案.【題目詳解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720°∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600°故答案為600°【題目點撥】本題考查了多邊形的內(nèi)角和外角,能知道多邊形的內(nèi)角和公式是解此題的關(guān)鍵,邊數(shù)為7的多邊形的內(nèi)角和=(n-2)×180°.16、100【解題分析】

利用加權(quán)平均數(shù)的公式直接計算.用91分,90分,81分別乘以它們的百分比,再求和即可.【題目詳解】小惠這學(xué)期的體育成績=91×20%+90×30%+81×10%=88.1(分).故答案為88.1.【題目點撥】此題考查了加權(quán)平均數(shù),掌握加權(quán)平均數(shù)的計算公式是本題的關(guān)鍵,是一道??碱}.17、:x≠﹣1.【解題分析】

根據(jù)分母不等于0列出不等式求解即可.【題目詳解】解:由題意得,x+1≠0,解得x≠﹣1.故答案為x≠﹣1.【題目點撥】本題考查了函數(shù)自變量的范圍,一般從三個方面考慮:(1)當(dāng)函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當(dāng)函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)非負.18、【解題分析】

過點D作DE⊥BC于點E,通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE;再由圖象可知,BD=,在Rt△DBE中應(yīng)用勾股定理求BE的值,進而在Rt△DEC應(yīng)用勾股定理求a的值.【題目詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm.∴AD=a,∴DE·AD=a,∴DE=2.當(dāng)點F從D到B時,用s,∴BD=.Rt△DBE中,BE=.∵ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a=2+(a-1),解得a=.【題目點撥】此題考查菱形的性質(zhì)和一次函數(shù)圖象性質(zhì),解答過程中要注意函數(shù)圖象變化與動點位置之間的關(guān)系;三、解答題(共66分)19、(1)tan∠ABD=;(2);(3)①當(dāng)時,;②當(dāng)時,;③當(dāng)時,.【解題分析】

(1)過點D作DH⊥BC于點H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根據(jù)三角函數(shù)定義即可解題.(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,當(dāng)點F落在AC邊上時,F(xiàn)G=CG,即可得到方程求出t.(3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時,分三種情況分別求出S與t之間的函數(shù)關(guān)系式,①當(dāng)時,F(xiàn)點在三角形內(nèi)部或邊上,②當(dāng)時,如圖:E點在三角形內(nèi)部,F(xiàn)點在外部,此時重疊部分圖形的面積S=S正方形-S△FMN,③當(dāng)時,重疊部分面積為梯形MPGN面積,【題目詳解】解:(1)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=1根據(jù)勾股定理得BC=10過點D作DH⊥BC于點H∵△ABD≌△HBD,∴BH=AH=6,DH=AD,∴CH=4,∵△ABC∽△HDC,∴,∴,∴DH=AD=3,∴tan∠ABD==,(2)由(1)可知BP=2PE,依題意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,當(dāng)點F落在AC邊上時,F(xiàn)G=CG,即,,(3)①當(dāng)時,F(xiàn)點在三角形內(nèi)部或邊上,正方形PEFG在△BDC內(nèi)部,此時重疊部分圖形的面積為正方形面積:,②當(dāng)時,如圖:E點在三角形內(nèi)部,F(xiàn)點在外部,∵GC=10-3t,NG=CG=(10-3t),F(xiàn)N=t-(10-3t),F(xiàn)M=,此時重疊部分圖形的面積S=S正方形-S△FMN,③當(dāng)時,重疊部分面積為梯形MPGN面積,如圖:∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,∴,綜上所述:當(dāng)時,;當(dāng)時,;當(dāng)時,.【題目點撥】本題考查三角形綜合題,涉及了矩形的性質(zhì)、勾股定理、相似三角形的性質(zhì)和判定、解直角三角形等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會構(gòu)建方程解決問題,屬于中考壓軸題.20、(1)4;1;(2)見解析;(3)B;(4)48.【解題分析】

(1)根據(jù)題目中的數(shù)據(jù)即可直接確定m和n的值;

(2)根據(jù)(1)的結(jié)果即可直接補全直方圖;

(3)根據(jù)中位數(shù)的定義直接求解;

(4)利用總?cè)藬?shù)乘以對應(yīng)的比例即可求解.【題目詳解】解:(1)由記錄的數(shù)據(jù)可知,7500≤x<8500的有8430、8215、7638、7850這4個,即m=4;

9500≤x<10500的有9865這1個,即n=1.故答案為4;1;(2)如圖:(3)由于一共20個數(shù)據(jù),其中位數(shù)是第10、11個數(shù)據(jù)的平均數(shù),

而第10、11個數(shù)據(jù)的平均數(shù)均落在B組,

∴這20名“健步走運動”團隊成員一天行走步數(shù)的中位數(shù)落在B組;故答案為B;(4)120×=48(人),

答:估計其中一天行走步數(shù)不少于7500步的有48人.故答案為48.【題目點撥】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.21、(1)作圖見解析;(2)證明見解析.【解題分析】試題分析:(1)、根據(jù)線段中垂線的作法作出中垂線,得出答案;(2)、根據(jù)平行四邊形的性質(zhì)得出△DOE和△BOF全等,從而根據(jù)對角線互相平分的四邊形為平行四邊形得出四邊形BFDE為平行四邊形,然后結(jié)合對角線互相垂直得出菱形.試題解析:(1)、作圖(2)在□ABCD中,AD∥BC∴∠ADB=∠CBD又∵EF垂直平分BD∴BO=DO∠EOD=∠FOB=90°∴△DOE≌△BOF(ASA)∴EO=FO∴四邊形BFDE是平行四邊形又∵EF⊥BD∴□BFDE為菱形22、(1)40;15(2)眾數(shù)為35,中位數(shù)為36;(3)60雙【解題分析】

(1)根據(jù)條形統(tǒng)計圖求出總?cè)藬?shù)即可;由扇形統(tǒng)計圖以及單位1,求出m的值即可;(2)找出出現(xiàn)次數(shù)最多的即為眾數(shù),將數(shù)據(jù)按照從小到大順序排列,求出中位數(shù)即可;(3)根據(jù)題意列出算式,計算即可得到結(jié)果.【題目詳解】(1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為6+12+10+8+4=40,圖A中m的值為100?30?25?20?10=15;故本次隨機抽樣的學(xué)生數(shù)是40名,A中值是15;(2)∵在這組樣本數(shù)據(jù)中,35出現(xiàn)了12次,出現(xiàn)次數(shù)最多,∴這組樣本數(shù)據(jù)的眾數(shù)為35;∵將這組樣本數(shù)據(jù)從小到大得順序排列,其中處于中間的兩個數(shù)都為36,∴中位數(shù)為=36;答:本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為35,中位數(shù)為36;(3)∵在40名學(xué)生中,鞋號為35的學(xué)生人數(shù)比例為30%,∴由樣本數(shù)據(jù),估計學(xué)校各年級中學(xué)生鞋號為35的人數(shù)比例約為30%,則計劃購買200雙運動鞋,有200×30%=60雙為35號.答:建議購買35號運動鞋60雙.【題目點撥】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關(guān)鍵.23、(1)m=400,n=100;(2)見解析;(3)54.4萬人;【解題分析】

(1)先根據(jù)樣本中看電視獲取新聞的人數(shù)與占比求出此次調(diào)查的總?cè)藬?shù),再根據(jù)B組別的占比即可求出人數(shù)m,再用用人數(shù)將去各組別即可求出n;(2)根據(jù)數(shù)據(jù)即可補全統(tǒng)計圖;(3)求出樣本中“電腦上網(wǎng)”和“手機上網(wǎng)”作為“獲取新聞的主要途徑”的占比,再乘以該市總?cè)藬?shù)即可.【題目詳解】(1)此次調(diào)查的總?cè)藬?shù)為140÷14%=1000(人),∴m=1000×40%=400,n=1000-280-400-140-80=100;(2)補全統(tǒng)計圖如下:(3)該市將“電腦上網(wǎng)”和“手機上網(wǎng)”作為“獲取新聞的主要途徑”的人數(shù)約為80×=54.4(萬人)【題目點撥】此題主要考查統(tǒng)計調(diào)查的應(yīng)用,解題的關(guān)鍵是根據(jù)題意求出調(diào)查的總?cè)藬?shù).24、(1)x=-1,;(2)-1<x<2;(3),.【解題分析】

(1)利用直線與x軸交點即為y=0時,對應(yīng)x的值,進而得出答案;(2)利用兩直線與x軸交點坐標(biāo),結(jié)合圖象得出答案;(3)兩條直線相交于點C,根據(jù)點C的左右兩邊圖像的位置可確定答案;利用三角形面積公式求得即可.【題目詳解】解:(1)∵一次函數(shù)y=k1x+b1和y=kx+b的圖象,分別與x軸交于點A(-1,0)、B(2,0),∴關(guān)于x的方程k1x+b1=0的解是x=-1,關(guān)于x的不等式kx+b<0的解集,為x>2,故答案為x=-1,x>2;(2)根據(jù)圖象可以得到關(guān)于x的不等式組的解集-1<x<2;(3)∵C(1,?3),根據(jù)圖象可以得到關(guān)于x的不等式k1x+b1>kx+b的解集:∵AB=3,∴S△ABC=AB?yC=×3×3=.【題目點撥】此題主要考查了一元一次方程的解、一次函數(shù)與不等式,一次函數(shù)與不等式組,三角形面積,正確利用數(shù)形結(jié)合解題是解題關(guān)鍵.25、(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB?CD,證明詳見解析;(3).【解題分析】

(1)根據(jù)三角形的中位線和全等三角形的判定和性質(zhì)解答即可;(2)如圖2中,作CK⊥BC,連接AF,延長AF交CK于K.連接DK,作DH⊥CK于H.首先證明△AFB≌△KFC,推出AB=CK,再利用勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論