版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省成都市青羊區(qū)石室中學2024屆高考沖刺數(shù)學模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.2.在的展開式中,含的項的系數(shù)是()A.74 B.121 C. D.3.若的內角滿足,則的值為()A. B. C. D.4.已知全集為,集合,則()A. B. C. D.5.若集合,則()A. B.C. D.6.已知,,分別為內角,,的對邊,,,的面積為,則()A. B.4 C.5 D.7.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調.如圖的程序是與“三分損益”結合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.8.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.9.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.10.已知復數(shù)滿足,則()A. B. C. D.11.的二項展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-2812.拋物線的準線方程是,則實數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.14.正三棱柱的底面邊長為2,側棱長為,為中點,則三棱錐的體積為________.15.函數(shù)過定點________.16.已知點P是直線y=x+1上的動點,點Q是拋物線y=x2上的動點.設點M為線段PQ的中點,O為原點,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,內接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設,表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.18.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.19.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設,,求證:若成等差數(shù)列,則也成等差數(shù)列.20.(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,,,求數(shù)列的前項和.21.(12分)在直角坐標系中,圓的參數(shù)方程為:(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.(1)求圓的極坐標方程;(2)若直線:(為參數(shù))被圓截得的弦長為,求直線的傾斜角.22.(10分)選修4-5:不等式選講已知函數(shù).(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.2、D【解析】
根據(jù),利用通項公式得到含的項為:,進而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運算求解的能力,屬于基礎題,3、A【解析】
由,得到,得出,再結合三角函數(shù)的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質,以及三角函數(shù)的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.4、D【解析】
對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.5、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.6、D【解析】
由正弦定理可知,從而可求出.通過可求出,結合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關系.本題的關鍵是通過正弦定理結合已知條件,得到角的正弦值余弦值.7、B【解析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結果.【詳解】輸入,由題意執(zhí)行循環(huán)結構程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結果.故選:【點睛】本題考查了循環(huán)語句的程序框圖,求輸出的結果,解答此類題目時結合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎.8、D【解析】
建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構造不等關系求得最值.9、B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.10、A【解析】
由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.11、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A.考點:二項式定理的應用.12、C【解析】
根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-【解析】試題分析:根據(jù)題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據(jù)余弦定理得考點:余弦定理及等比數(shù)列的定義.14、【解析】
試題分析:因為正三棱柱的底面邊長為,側棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.15、【解析】
令,,與參數(shù)無關,即可得到定點.【詳解】由指數(shù)函數(shù)的性質,可得,函數(shù)值與參數(shù)無關,所有過定點.故答案為:【點睛】此題考查函數(shù)的定點問題,關鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關,熟記常見函數(shù)的定點可以節(jié)省解題時間.16、3【解析】
過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當直線相切時距離最小,計算得到答案.【詳解】如圖所示:過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點M為線段PQ的中點,故M在直線y=x+38時距離最小,故故答案為:32【點睛】本題考查了拋物線中距離的最值問題,轉化為切線問題是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2),最大值.【解析】
(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,當且僅當,即時取等號,∴當時,體積有最大值.【點睛】本題考查了線面垂直的證明和三棱錐的體積,考查了學生邏輯推理,空間想象,轉化劃歸,數(shù)學運算的能力,屬于中檔題.18、(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結論成立;②兩切線、的斜率都存在,可設切線的方程為,將該直線的方程與橢圓的方程聯(lián)立,由可得出關于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結論;(2)求出點、的坐標,利用兩點間的距離公式結合韋達定理得出,換元,可得出,利用二次函數(shù)的基本性質可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當兩切線、的斜率都存在時,設切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據(jù)題意得、,,令,則,所以,當時,,當時,.因此,的取值范圍是.【點睛】本題考查橢圓兩切線垂直的證明,同時也考查了弦長的取值范圍的計算,考查計算能力,屬于中等題.19、(1)3;(2);(3)見解析.【解析】
(1)依據(jù)下標的關系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數(shù)列,設公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列?!军c睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應用,意在考查學生的邏輯推理,數(shù)學建模,綜合運用數(shù)列知識的能力。20、(1);(2)【解析】
(1)當時,利用可得,故可利用等比數(shù)列的通項公式求出的通項.(2)利用分組求和法可求數(shù)列的前項和.【詳解】(1)當時,,所以,當時,,①,②所以,即,又因為,故,所以,所以是首項,公比為的等比數(shù)列,故.(2)由得:數(shù)列為等差數(shù)列,公差,,,.【點睛】本題考查數(shù)列的通項與求和,注意數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.21、(1);(2)或【解析】
(1)消去參數(shù)可得圓的直角坐標方程,再根據(jù),,即可得極坐標方程;(2)寫出直線的極坐標方程為,代入圓的極坐標方程,根據(jù)極坐標的意義列出等式解出即可.【詳解】(1)圓:,消去參數(shù)得:,即:,∵,,.∴,.(2)∵直線:的極坐標方程為,當時.即:,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國座椅薄膜罩市場調查研究報告
- 2025-2030年中國食品包裝機械行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國鉬礦市場發(fā)展現(xiàn)狀規(guī)劃分析報告
- 2025-2030年中國運輸皮帶機產(chǎn)業(yè)規(guī)模分析及發(fā)展建議研究報告
- 2025-2030年中國軌道交通空調行業(yè)運行動態(tài)分析與營銷策略研究報告
- 2025-2030年中國質量檢驗檢測市場發(fā)展前景調研與投資策略分析報告
- 農業(yè)機械動力設備知識考核試卷
- 信息系統(tǒng)在電子商務中的應用考核試卷
- 園林綠化工程綠化施工項目施工現(xiàn)場管理考核試卷
- 2025年度飯店裝修合同及二零二五年度裝修工程報價
- 高職《勞動教育》指導綱要
- XX公司年會活動報價單
- 鋼鐵生產(chǎn)企業(yè)溫室氣體核算與報告案例
- 農業(yè)合作社全套報表(已設公式)-資產(chǎn)負債表-盈余及盈余分配表-成員權益變動表-現(xiàn)金流量表
- 貝利嬰幼兒發(fā)展量表BSID
- 人教部編版八年級歷史下冊第7課 偉大的歷史轉折課件(共25張PPT)
- SB/T 10863-2012家用電冰箱維修服務技術規(guī)范
- 偏癱患者的臨床護理及康復評估課件
- 公路施工期環(huán)保課件
- 檢驗科危急值項目范圍考核試題與答案
- 3Q模板 IQOQPQ驗證方案模版
評論
0/150
提交評論