![參考講稿文稿_第1頁(yè)](http://file4.renrendoc.com/view11/M02/2D/09/wKhkGWXk-HSAEeQlAAGEQL5s_kk730.jpg)
![參考講稿文稿_第2頁(yè)](http://file4.renrendoc.com/view11/M02/2D/09/wKhkGWXk-HSAEeQlAAGEQL5s_kk7302.jpg)
![參考講稿文稿_第3頁(yè)](http://file4.renrendoc.com/view11/M02/2D/09/wKhkGWXk-HSAEeQlAAGEQL5s_kk7303.jpg)
![參考講稿文稿_第4頁(yè)](http://file4.renrendoc.com/view11/M02/2D/09/wKhkGWXk-HSAEeQlAAGEQL5s_kk7304.jpg)
![參考講稿文稿_第5頁(yè)](http://file4.renrendoc.com/view11/M02/2D/09/wKhkGWXk-HSAEeQlAAGEQL5s_kk7305.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Content(1/2)Part2
MountVibrationAnalysis
IntroductioninVehicleNVH
PowerUnitMountVibrationAnalysisasPartofVehicleNVHInvestigation
Introduction
BasicEngineMountConceptInvestigation
NumericalInvestigationofPowerUnitMountVibrations
DefinitionsandBasicsaboutNVHEvaluationandPost-processing
PowerUnitVehicleExcitation
TheEngineMountCharacteristic
DifferentStiffnessDefinitionsandMeasurementSet-upDifferentBasicModelsforEngineMountRepresentation
ModellingofFrequencyandAmplitudeDependingMountCharacteristicsFEMBasedMountCharacteristicCalculation
ModellingofControlledEngineMounts
ContributionofExhaustSystemVibrationsandNoise
Outlook:CFDInvestigationforHydro-mounts(UDJ)
PowerUnitMountVibrationAnalysis
FigureNo.
2
Content(2/2)Part2
MountVibrationAnalysis
LevelConceptforPowerUnitMountVibrationAnalysisfromConcepttoDetailedDesignPhase
GeneralApproach
Examples
ExampleforModellingLevelM1–ComparisonSpeedSweepandEngineRun-up
ExampleforCompleteLevelConcept
ExampleforCompleteLevelConceptandComparisonwithMeasurements(CustomerExample)
SummaryandConclusions
PowerUnitMountVibrationAnalysis
FigureNo.
3
POWERUNITVEHICLEEXCITATION
MountVibrationAnalysis
PowerUnitMountVibrationAnalysis
FigureNo.
4
NUMERICALMOUNTVIBRATIONANALYSISVEHICLEINTEGRATION/EXCITATION
MountVibrationAnalysis
ExcitationCalculationforChassisVibrations
ExcitationinEngineMountingPoints:
forVehicle(ChassisandCarBody)VibrationandAcousticAnalysis
SimulationofInteriorNoiseContributionofEngineVibrations
MountVibrationsbetweenEngineandChassis
Excitationforcesatpowertrainmountsofapassengercarengine,
4000rpm,fullload
EXCITEEMO1joint:Automaticidentificationoffrequencydependentmodelparametersofenginemountsforthetimebasedcalculation
PowerUnitMountVibrationAnalysis
FigureNo.
5
CALCULATIONOFINTERIORNOISEOVERVIEW
MountVibrationAnalysis
Excitations:
Powertrain,road,intakeandexhaustsystems,wind
CarBody
Cabin
Trim
PowerUnitMountVibrationAnalysis
FigureNo.
6
Absorption
Damping
FluidVibration
StructureVibration
InteriorNoise
CALCULATIONOFINTERIORNOISESHORTEXCURSE
State-of-the-artintheVibro-acousticSimulations
MountVibrationAnalysis
ElementBasedMethods
deterministicmethods
simplepolynomialshapefunctions
finediscretization
EnergyBasedMethods:
statisticalmethods
highmodaloverlap
spatialaveragedresults
F
EM
GAP
frequency
~500Hz
~1500Hz
PowerUnitMountVibrationAnalysis
FigureNo.
7
SEA
EM/BEM/IF
VEHICLENVH
HYBRID(MODULAR)APPROACH
MountVibrationAnalysis
Experiment
Simulation
Excitation/Source
ModularApproach
MountVibrations
TransferthroughSub-frameChassis
TransferFunction
ConnectorPoints-Microphone
ConnectorPointVibrations
Superposition
Qi sources
Hi....transferfunctions
Vibrations
Noise
PowerUnitMountVibrationAnalysis
FigureNo.
8
SeatVibrations,..
HumanEar
Experiment Simulation
Validation
Noise:=Hi·Qi
Hi
Hi
Qi
Qi
VEHICLENVH
HYBRID(MODULAR)APPROACH
SoundPowerSource
MountVibrationAnalysis
atPass-byMicrophonePosition
Hybridapproachforbothinternalandexternalapplicable
Structuraltransferfunctionwithinpowerunit,viaenginemountsandviaSub-frameandChassis(optional)bysimulation
Reciprocalmeasurementofpass-bynoisetransferfunction:Soundpoweratthepass-bynoisepositiontoSoundpressureateachindividualsource
Pass-byMicrophones
SoundPower(P)
NoiseTransferFunction
Sound
Interior
Pressure(p)
Microphones
TransferFunctionsHi
SimulationExperiment
PowerUnitExcitation
PowerUnitMountVibrationAnalysis
FigureNo.
9
HYBRIDAPPROACH/EXAMPLEINTERIORBOOMNOISE/DEFINITION
BoomNoise/Characteristic:
Annoyinghummingnoise,so-calledBOOM,causedbyInteriorCavityMode,
~20-150Hz(calledluggingboomorlowspeedboom),pronouncedforRearWheelDrives.
MainEngineOrders:Essentiallyby2nd(4Cyl.)/3rd(6Cyl.)
Thedrivelineamplifiesandexcitesthechassis(chassisorcarbodyresonance)andthechassisexcitesaninteriormodeinsidethepassengercompartment.
Dominatingexcitationistypicallytorquefluctuationandexcitationoftorsionalmodesinthedrivelinesystem.
Highspeed(or“normal”)boomismainlyaffectedbybendingmodesinthedriveline.
MountVibrationAnalysis
PowerUnitMountVibrationAnalysis
FigureNo.10
HYBRIDAPPROACH/EXAMPLE
INTERIORBOOMNOISE/TARGETSYSTEM
TheTargetSystem:
Bodyonframevehicleconstructionofapick-uptruck
4-cylinderturbo-chargedDieselengine
Manualtransmission(6-speedmanual);5thgearloadcaseonly
Rearwheeldrivenversion(beamaxleonleafsprings)ofapick-uptruck
Calculationofspeedrange;1100-1700rpmWOT
Componentstoconsider:Engine,TransmissionwithEntireDriveline(DMFW!),Chassis/Mounts,Wheels,Suspension(LeafSprings!),[CarBody,Compartment]
MBD-Modelling:Coupledtorsional/bendingapproachofdriveline,flexiblechassis/mounts
Mainresultsareforcesatchassismountingpositionsfromengine,drivelineandsuspension.Calculatedexcitationcombinedwithmeasuredtransferfunctionsofcarbodyandcompartment;gearconnectionstobeincluded.
MountVibrationAnalysis
PowerUnitMountVibrationAnalysis
FigureNo.11
HYBRIDAPPROACH/EXAMPLEINTERIORBOOMNOISE/MODEL
MountVibrationAnalysis
TheModellingApproach:
Creationofatransmission,driveline,suspensionmodelthataccuratelypredictsforcingfunctionsatframeattachment(mounting)points.
FlexibleFEMbasedstructuresforpowerunit,cranktrain,transmissionshafts/gears,driveline,chassis,rearaxlehousing,leafsprings.
Rigidbody(Ri3D)forcabin
Rearwheelsrunonarepresentationofthetestbedroller,usinggearjointsforroller-wheelconnection
EvaluationofdrivelineboombycalculationoftheexcitationbyEXCITEfromrunningdrivelinefordefinedoperatingconditionsatstationaryconditions.
Evaluationofresponseatchassismountingpointsofdrivelineandsuspension.
PowerUnitMountVibrationAnalysis
FigureNo.12
wheels
cardanshafts
(SHMmodel)
transmission
shafts&gears(SHMmodel)
chassisframe
(FEMmodel)
testbedroller(SHMmodel)
cranktrain(SHM
model)
rearleafspring(FEM
model)
engine(FEM
model)
cabin
stabilizerbar(FEMmodel)
sideshafts(SHM
model)
differential
(SHM
model)
gearsystem(SHM
model)
rearaxle(FEMmodel)
THEDRIVELINE
MODELINGHINTS/LEAFSPRINGS
MountVibrationAnalysis
LeafSpringsforInteriorBoomNoiseInvestigation
ModellingApproach:
Torsionalfluctuation(=maineffectforlowspeedboom)andbendingvibrationsincluded
Flexibledrivelineconsistsof:CrankTrain
Transmission–DriveShafts–Differential
SideShafts–Wheels
Gearjointatdifferentialincludedtoinducecorrectsupportforces
Universaljointsbetweencardanshafts
Powerunit,frame,rearaxle,leafspringsandchassisascondensedFEMmodels
Wheelsdrivenontestbedrollertoensurecorrectforceexcitationatrearsuspension;contactwheel–rollerenabledbyGEARandNONLjoints
Non-linearclutchandDMFcharacteristic
torquefluctuation
Importantaxialforceonfrontbushingofrearleafspring
→mainexcitationpathforboomnoise
verticalforce
PowerUnitMountVibrationAnalysis
FigureNo.13
rearleafspringmodel
HYBRIDAPPROACH/EXAMPLEINTERIORBOOMNOISE
MountVibrationAnalysis
InteriorBoomNoiseInvestigation
Investigation:
Variationof:
Non-linearclutchcharacteristics,Flywheelconfigurations(SMF,DMF)Suspensionbushingcharacteristics
Additionaltorsionalvibrationdamperindriveline
Improvementofnoisetransferfunctions(NTF)onchassisandbracketside
Effectofsofteningfrontleafspringbushed
PowerUnitMountVibrationAnalysis
FigureNo.14
NoiseLevel[rdB(A)]
EngineSpeed[rpm]
THEENGINEMOUNTCHARACTERISTICMEASUREMENTANDMATHEMATICALMODELS
MountVibrationAnalysis
Measurement
MountCharacteristic
MathematicalRepresentation
60000
54000
force/displ.RandomNoise
48000
42000
force/displ.Sinus
36000
30000
24000
18000
12000
6000
0
100
300
500
700
900
1100
FrequencyinHz
PowerUnitMountVibrationAnalysis
FigureNo.
15
Stiffness(N/mm)
ENGINEMOUNT
FREQUENCYDEPENDENTCHARACTERISTC
MountVibrationAnalysis
Actualtargetofdetailedmountvibrationanalysisisbetween0–1kHz
Mountjointsshowsignificantfrequencydependedcharacteristic,especiallyinhigherfrequencyrange(>300Hz)
Thisrequiresextendedjointmodels
EXCITEiscalculatingintimedomainduetothehighnon-linearitiesinthesystem(i.e.bearings)
Thereforeconsiderationoffrequencydependencyistobedonebyspecialmathematicaljointmodels,assembledbysprings,massesanddampers
Frequencydependencyformountjointsisverysensitiveandcanhardlybepredicted.
Thereforemeasureddatafromexperimentwithrealmountsispreferred
Target:Considerationoffrequencydependentenginemountcharacteristicsbasedonmeasureddata
FigureNo.16
→resultsforsinusandrandomnoiseexcitation
PowerUnitMountVibrationAnalysis
Stiffness(N/mm)
60000
54000 force/displ.
RandomNoise
48000
42000
force/displ.Sinus
36000
30000
24000
18000
12000
6000
0
100 300 500 700 900 1100
FrequencyinHz
MountVibrationAnalysis
DifferentStiffnessDefinitionsand
MeasurementSet-up
PowerUnitMountVibrationAnalysis
FigureNo.17
TESTBEDSET-UPFORANDDIFFERENTSTIFFNESSDEFINITIONS
MountVibrationAnalysis
FE
z
engine→shaker
E
d2m2
c
chassis→frame
zB
FB
Shaker/
ShakerTable
Mount
FE
z
E
AVLtypicmeasuresc
zB=0
pointstiffn
Frame
FE
zE=0
zE=0
Mount
Mount
zB
z
B
FB
PowerUnitMountVibrationAnalysis
FigureNo.18
OutputStiffnessK*BB
InputStiffnessK*EE
Mount zE
ally
ross zB=0
ess F
B
CrossPointStiffnessK*BE
c2
1
z…applieddisplacementbyshaker
F…measuredforcebyforcetransducer
TESTBEDSET-UPFORANDDIFFERENTSTIFFNESSDEFINITIONS
MountVibrationAnalysis
FE
z
E
d2
m
c
2
zB
FB
K*BB
K*EE
K*BE
PowerUnitMountVibrationAnalysis
FigureNo.
19
F K*BE z
B 1H K* E
BB BB
KBB*jf
FBjf
zBjf
KBE*jf
FBjf
zEjf
Identificationc1,c2,d2,m2
FB
zE FE
Measurement
c2
1
KEE*jf
FEjf
zEjf
InputStiffnessK*EE
CrossPointStiffnessK*BEOutputStiffnessK*BB
MEASUREMENTOFCROSSPOINTSTIFFNESS
MountVibrationAnalysis
CrossPointStiffnessK*BE
Measurementresults:
Dynamiccrosspointstiffnesscharacteristicsversusfrequency;eitherasmagnitude/phaseorcomplex(real/imaginarypart)values
Dataisusedasinputfordynamicmodelofenginemountingcharacteristics
PowerUnitMountVibrationAnalysis
FigureNo.20
K*jfFBjf
BE zjf
E
engine
zE
d2 engine
c1 m2 mount
chassis FB
c2
MEASUREMENTSET-UPFORDETERMINATIONOFMOUNTCHARACTERISTIC
MountVibrationAnalysis
MeasurementProcedure:
Measurementofresultantdisplacementviaaccelerometersandforceviaforcetransducer
Performmeasurementsonrealenginemounts
Themountisplacedbetweentheshaker(movablepart)tableandtheframe
Useenginemountalonew/obracketsasthosearerepresentedasseparateFEMstructuresinthemodel
Measurementisdonebetweensameconnectorpositionsasinsimulationmodel
Measureofcross-pointstiffnessfordifferentshakerfrequencies(f~3-10Hz)
Excitationbysinusoidalsweepmethod
Forcetransducer
(FBbetweenframeandmount)
Accelerometers(onshakertableandontheframenexttotheaccelerometer)tomeasurerelative
displacementz=zE–zB(displacementofthemount)
PowerUnitMountVibrationAnalysis
FigureNo.21
→chirpsignalorband-limitedwhitenoise(random)signalarenotrecommendedduetomixtureofsingleharmonicsandnon-constantexcitationamplitude
FB
CrossPointStiffnessK*BE
frame
zE FE
shakertable
Measurement
MEASUREMENTOFCROSSPOINTSTIFFNESSREMARKS
MountVibrationAnalysis
Remarks:
Themountingcharacteristicisverysensible!
Noeigenmodesofthetestfacility(testrigofstiffsteelprofiles)areallowedinsidetheevaluatedtargetfrequencyrange!Checkbypre-testw/omount.
Thesamemountsasusedfortherunningengineonthetestbedhavetobemeasured.
Forcomparisonofdifferentmeasuredresultsandevaluationofresultvariation2identicalmountsshouldbemeasuredinaddition(→scatterband).
Measurementsshouldbeperformedbeforeenginerun(newmounts)andagainafterenginerun(usedmounts)todetermineinfluenceofmaterialaging/fatigueonstiffnesscharacteristics.
Measurementshouldtobeperformedinall3directionsofthemounts(asfaraspossible)
Consideredfrequencyrange:0to1kHz(maindirection,lowerlimitsforotherdirections)
Accuracyofresultsbetweensimulationandmeasurementforvibrationresponse:Targetvaluesare±3dBupto250Hzand±5dBupto1kHzofvelocitylevels
PowerUnitMountVibrationAnalysis
FigureNo.
22
ENGINEMOUNTMODELSFORDIFFERENTFREQUENCYDEPENDENTCHARACTERISTICS
MountVibrationAnalysis
m1
c2
m2
d1
c3
d3
c1
Kelvin-VoigtModel(NONL)
Constantinfrequencydomain,butamplitudedependent
StandardSolidModel(SLS)
MiniOscillatorModel(EMO1)
MiniOscillatorExtendedModel
(EMO1)
RequiredJointModelComplexityandTypeisDependingontheFrequencyRangeofInterest
PowerUnitMountVibrationAnalysis
FigureNo.23
DynamicStiffness[Ns/mm]
DynamicStiffness[Ns/mm]
DynamicStiffness[Ns/mm]
SLS
ExtendedMiniOscillator
MassModel
MassModel
FREQUENCYDEPENDANTMOUNTMODELEMO1
AUTOMATEDMODELSET-UPBASEDONMEASUREMENT
MountVibrationAnalysis
EXCITEEMO1ModelSet-up:
Performmeasurementswithrealmount
Readingmeasureddynamicstiffnessforeachdirection
Approximationofmeasuredcurves
AutomatedparameteridentificationforEMO1jointbyuseofanintegratedoptimizationalgorithm
Outputofjointparametersforthe
RealPartofFRF
600
EXCITEkernel
Measurement
Approximation
Identification
400
200
0
-200
IdentifiedEXCITE
-400
-600
ModelCharacteristic
100150200250300350400450
Frequency(Hz)
500
550
600
650
ImaginaryPartofFRF
1200
Measurement
Approximation
1000
Identification
800
600
400
200
0
-200
100150200250300350400450500
Frequency(Hz)
550
600
650
PowerUnitMountVibrationAnalysis
FigureNo.24
Dyn.Stiffness(N/mm^2)
Dyn.Stiffness(N/mm^2)
Measurement
MountVibrationAnalysis
Modellingof
FrequencyandAmplitudeDependingMountCharacteristics
PowerUnitMountVibrationAnalysis
FigureNo.25
EXTENDEDMOUNTMODELS
AMPLITUDEANDFREQUENCYDEPENDENTMOUNT
MountVibrationAnalysis
ExtendedEngineMountModel
SystemDescription:
Frequencydependency(measuredforonepreload)–availableforSLSandEMO1
Amplitudedependency(variationofpreloadatmeasurement)
Thisisinputforextendedjointmodel.Resultisamplitudeandfrequencydependentcharacteristics.
ModeldefinedasMATLABmodelandrunsinco-simulationwithEXCITE
Measurementforsinglefrequenciesbysinussweepmethod
EMO1-joint(originalmodelhasconstantstiffnessparametersforc1)
PowerUnitMountVibrationAnalysis
FigureNo.26
k[N/mm]
500
measurement
400 quadr.model
300 meanstiffness200
100
0
0 2 4 6 8
x[mm]
EXTENDEDMOUNTMODELS
AMPLITUDEANDFREQUENCYDEPENDENTMOUNT
MountVibrationAnalysis
ExtendedEngineMountModel
Interpolationforcompletefrequencyandamplitudedependingstiffnessmap
PowerUnitMountVibrationAnalysis
FigureNo.
27
k[N/mm]
crossstiffness
Alternativelycompletemapcouldbemeasured,whichisverycostlyandtimeconsumingandshouldbeavoidedtherefore.
500
measurement
400 quadr.model
300 meanstiffness200
100
0
0 2 4 6 8
x[mm]
MountVibrationAnalysis
FEMBasedMountCharacteristicCalculation
PowerUnitMountVibrationAnalysis
FigureNo.28
FEMBASEDSTIFFNESSCALCULATION
MountVibrationAnalysis
DetermineMaterialModel
FEMmodelingofenginemountsusingnon-linearmaterialmodel
Materialmodelistunedbymeasuredstiffnesscharacteristicformainloadingdirection
ValidatedFEMmodelcanbeusedtocalculatestiffnesscharacteristicsforotherloaddirections(longitudinalandbending),wheremeasurementeffortistoohigh.
Materialmodelcanbeusedforsimilarmountsw/onecessityofmeasurements
FigureNo.29
FEMModelSet-up
Measurement
MainLoadDirection
Validationandtuningofmaterialmodel
StiffnessCharacteristic
FEMAnalysis
CalculationofallDirections
StiffnessCharacteristic
c2
m1
c1
c3
ParameterizationofEXCITEModel
m2
c
4
PowerUnitMountVibrationAnalysis
FEMBASEDSTIFFNESSCALCULATIONMATERIALMODEL
MountVibrationAnalysis
TypicallyfollowinghastobeconsideredwithintheFEManalysis:
Pre-load
Contact(non-linearity)
Non-linearmaterialmodel(ofrubbermaterial)
Rubber-likematerials,whicharecharacterizedbyarelativelylowelasticmodulusandhighbulkmodulusareusedinawidevarietyofstructuralapplications.
Thesematerialsarecommonlysubjectedtolargestrainsanddeformations.
Hyper-elasticmaterialsexperiencelargestrainsanddeformations.
Differentmaterialmodels,whichpredictlarge-scalematerialdeflectionanddeformationscanbeused:Basically2typesareused:
Incompressible
Compressible
PowerUnitMountVibrationAnalysis
FigureNo.30
FEMBASEDSTIFFNESSCALCULATIONMATERIALMODEL
MountVibrationAnalysis
Incompressible
Mooney-Rivlinworkswithincompressibleelastomerswithstrainupto200%.Forexample,rubberforanautomobiletireorenginemount.
Arruda-Boyceiswellsuitedforrubberssuchassiliconandneoprenewithstrainupto300%.Thismodelprovidesgoodcurvefittingevenwhentestdataarelimited.
Ogdenworksforanyincompressiblematerialwithstrainupto700%.Thismodelgivebettercurvefittingwhendatafrommultipletestsareavailable.
Compressible
Blatz-Koworksspecificallyforcompressiblepolyurethanefoamrubbers.
Hyperfoamcansimulateanyhighlycompressiblematerialsuchasacushion,spongeorpadding
PowerUnitMountVibrationAnalysis
FigureNo.
31
FEMBASEDSTIFFNESSCALCULATIONMATERIALMODEL
MountVibrationAnalysis
→TypicalmaterialmodelforrubbermountsistheMooney-Rivlindefinition.
In1951,RivlinandSundersdevelopedahyper-elasticmaterialmodelforlargedeformationsofrubber.
Thismaterialmodelisassumedtobeincompressibleandinitiallyisotropic.
TheformofstrainenergypotentialforaMooney-Rivlinmaterialisgivenas:
3)c01(I23)1/d(J1)2
W=c10(I1
Where
c10
,c01and
d
arematerialconstantsand
Wistheelasticpotentialorstrainenergydensityfunction.
Thehyper-elasticconstantsinthestrainenergydensityfunctionofamaterialaredefinedbyitsmechanicalresponse.
ThereforeitisnecessarytoassesstheMooney-Rivlinconstantsofthematerialstoobtainsuccessfulresultsofahyper-elasticmaterials.
Forhyperelasticmaterials,simpledeformationtests(consistingofsixdeformationmodels)canbeusedtodeterminetheMooney-Rivlinhyper-elasticmaterial.
PowerUnitMountVibrationAnalysis
FigureNo.
32
MountVibrationAnalysis
ActiveNoiseControl
ModellingofControlledEngineMounts
PowerUnitMountVibrationAnalysis
FigureNo.33
ACTIVENOISECONTROL
MountVibrationAnalysis
ActiveNoiseControl:
Objective:Realizationofintelligent,highperformingadaptivematerialsystemsfornoisereductioninthesamemannerascommonpassiveorlightweightmaterialsareused.
Activenoisereductioninenginedynamicssimulation:
source:InMAROverview
Controlofstructuralvibrationsoflinear-elasticFE-structure
example:vibrationofoilpan
source:
www.ifr.uni-hannover.de
PowerUnitMountVibrationAnalysis
FigureNo.34
Controlofthevibrationatconnectionsofbodies
example:enginemountvibration
Activemountingoftheengine
METHODOLOGYOFTHECONTROLSYSTEM
MountVibrationAnalysis
InterfacetoControlSystem
InterfaceSolutiontoMATLAB?/Simulink?:
InterfaceispreparedasS-FunctionblockforSimulink
EXCITEPowerUnitandEXCITETimingDriveprovidedisplacementsandvelocitiesforselectedDoFs
MATLABreturnsforcesandmomentsforthelinkedDoFs
MATLABcanrunonthesameoraremotemachine
PowerUnitMountVibrationAnalysis
FigureNo.35
DLL TCP/IP
Matlab?Interface(S-function)
Simulink?
MATLAB?/Simulink?
CONTROLSYSTEMRIGIDCHASSIS
MountVibrationAnalysis
PossibleApplications
EXCITEPowerUnit:
InMAR
Externaljoints,loads,dampingfunctions
Electricmotor(externalmoment),hybridengines,onewayclutch,twodiskclutch,...
SpecificApplicationExamples:AxialSurface-to-SurfaceContact
Multi-BodyModelwithMATLABLink
EXCITETimingDrive:
Controlofvariablevalvetrains,electro-magneticvalvetrains
Integrationofnon-usualcomponents(e.g.pneumaticsprings,…)
General
Anykindofelectric-mechanicalcontrolmechanismConnectionwithotherCAEtoolswithMATLAB
S-Functioncapability
FigureNo.36
PowerUnitMou
CoMA
trolmechanismTLAB/SIMULINK
Interface
MATLAB
ntVibrationAnalysis
Factor
displacement,velocity
force
ControlledEngineMount
CONTROLSYSTEM
RIGIDCHASSIS/RESULTS
Impactofcontrol:
Mountingforceinverticaldirectionandcontrolforce
MountVibrationAnalysis
Vertical
Force
1000
MountingForce(Uncontrolled)MountingForce(Controlled)ControlForce
500
0
-500
-1000
-1500
0
1440
2880
CrankAngle(deg)
4320
5760
Impactofcontrol:
Verticaldisplacementsofcontrolledsystemvs.uncontrolled
VerticalDisplacement
-99
-99.25
-99.5
-99.75
UncontrolledControlled
-100
0
1440
2880
CrankAngle(deg)
4320
5760
PowerUnitMountVibrationAnalysis
FigureNo.37
Force(N)
Displacement(mm)
CONTROLSYSTEM
RIGIDCHASSIS/RESULTS
MountVibrationAnalysis
Absolutevalueofvelocityintimedomain(un-/controlledstate)
Velocityoverengineorders
(un-/controlledstate)
PowerUnitMountVibrationAnalysis
FigureNo.38
Velocity(dB)
Velocity(mm/s)
AmplitudeofVelocity
120
100 10dB
80
UncontrolledControlled
60
0 2 4 6 8 10
Order
AbsoluteValueofVelocity
300
Uncontrolled
225 Controlled
150
75
0
0 1440 2880 4320 5760
CrankAngle(deg)
CONTROLLEDENGINEMOUNTSFLEXIBLECHASSIS
MountVibrationAnalysis
EngineMountsControlSystemincludingFlexibleCar-Body
SystemDescription:
TheModelIncludes
EngineForcesStructureoftheEngine
ModelofControlledEngineMountsStructureoftheBody-in-White
SimplifiedModelofWheelMounts
Co-SimulationofAVLEXCITEwithSimulink?viaLink-to-MATLAB
PowerUnitMountVibrationAnalysis
No.39
Figur
CONTROLLEDENGINEMOUNTSANALYSISRESULTS
MountVibrationAnalysis
EngineMountsControlSystemincludingFlexibleCar-Body
ResultsoftheActiveEngineMountsVelocityLevels
Difference
-9.6dB
-6dB
MeanvelocitylevelindB(5.5·10-8m/s)
FigureNo.40
PowerUnitMountVibrationAnalysis
Mount Mount
(engineside) (carside)
Driver’sSeat
Uncontrolled
Controlled
(car’svertical)
Controlled(engine’svertical)
92.2 75.6
91.9 71.4
91.7 66.0
66.8
62.6
60.8
CONTROLLEDENGINEMOUNTSANALYSISRESULTS
MountVibrationAnalysis
EngineMountsControlSystemincludingFlexibleCar-Body
ImpactoftheControlonaSystemwithFlexibleCar-Body
AbsoluteValueofVelocityVersusEngineOrders
NetPowerConsumptionoftheControlleratOneMount
Uncontrolled
Controlled(car’svertical)Controlled(engine’svertical)
PowerUnitMountVibrationAnalysis
FigureNo.41
CONTRIBUTIONOFEXHAUSTSYSTEMTOVIBRATIONANDNOISE
MountVibrationAnalysis
PowerUnitMountVibrationAnalysis
FigureNo.42
Exhaustsystemrearpart
ExhaustSystemMounts
Exhaustsystemfrontpart
(Flexible)coupling
EXHAUSTSYSTEMSIMULATIONOVERVIEW
MountVibrationAnalysis
1D/3DCFDFluidAcousticAnalysis
EngineVibrationbyMBS
GasDynamicExcitation
SimulationTargetsare:
vibrationsatmountingpoints
shell(structureborne)noise
(structuraltemperaturesandstress/strain)
CFDandMBSisusedforrealisticboundaryconditionsforFEManalysis
Allsimulationsareperformedtransientforcompleteenginecyclesintimedomain
MountPointVibrations
SurfaceVibrationofExhaustSystem
NoiseRadiation
OrificeNoise
ExcitationofChassis
ExteriorNoise
InteriorNoise
PowerUnitMountVibrationAnalysis
FigureNo.43
SIMULATIONOFEXHAUSTSYSTEMSBOUNDARYCONDITIONS
MountVibrationAnalysis
Fortheradiatedshellnoiseandthevibrationsofthemountingsystemgasflowexcitationandvibrationscausedbythepowerunithavetobetakenintoconsideration.
Vibrationsofthepowerunitsystemarederivedfrommulti-bodydynamicanalysis(MBS).
GaspressureexcitationisbasedonsurfacepressuredistributionprovidedbyCFDanalysis.
StructuraltemperaturesareoflessimportanceforNVHinvestigationofexhaustsystems,butmeantemperaturehastobeconsideredforcorrectmaterialanddampingproperties
Vibrationexcitationfromrunning/vibratingpowerunit
Vibrationexcitationduetogasflow
Temperatureloadduetonearwallgastemperatures(fordurabilityissues)
PowerUnitMountVibrationAnalysis
FigureNo.44
SIMULATIONOFEXHAUSTSYSTEMSTARGETSOFINVESTIGATION
MountVibrationAnalysis
Localstructuraltemperatures(fordurabilityissues)
Localstressesduetovibrationsandthermalload
Structurebornenoise(shellnoise)
Pressureexcitationofchassisbyradiatednoisefromtheexhaustsystem(airpath)
Pressureexcitationonbottomchassisstructure200Hz(6000min-1)basedonnoiseradiationfromtheexhaustsystem.
Vibrationstothechassis(structuralpath)
ForcesatMountPositionsofChassisunderTransientEngineRun-up(2ndOrderExcitation)
10
BetragderKraftaneinerEinleitepositionam
VSD,
NSDstromauf,
NSDstromab.
1
0.1
0.01
30
50
100
150
200
PowerUnitMountVibraFtrieoqnueAnnza[Hlyzs]is
FigureNo.45
Kraft[N]
EXHAUSTSYSTEMVIBRATIONSRESULTS
MountVibrationAnalysis
Contributionstructureandairbornenoise
Contributionofexhaustnoisetototalnoise
80
50
70
60
40
50
30
40
20
30
10
20
0
10
DifferenzzumgemessenenGesamtpegel
-10
0
4
3
2
1
0
soundpressureatdriver'srightear
-20
excitedviamounting
,air:
,sum
BeitragzumInnenger?usch
-30
30
50
100
150
200
frequency[Hz]
50
100
Frequenz[Hz]
150
200
Noiselevelatdriversearbasedonboth,directstructuralexcitationbyvibration(structuralpath)andnoiseradiationtothechassis(airpath)fromtheexhaustsystem
Upperdiagram:Differenceofexhaustnoisetototalnoise
Lowerdiagram:maximumcontributionfromexhaustnoisetototalnoise
FigureNo.46
PowerUnitMountVibrationAnalysis
eff.pressure[dBA(210-5Pa)]
Schalldruck[dB]
Schalldruck[dB]
BASICINVESTIGATIONINHYDRO-MOUNTSOUTLOOK
MountVibrationAnalysis
source:
source:
www.ph.co.kr
PowerUnitMountVibrationAnalysis
FigureNo.47
SIMULATIONOFHYDRO-MOUNTSCHARACTERISTIC
MountVibrationAnalysis
Hydro-mountsar
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 溝通與協(xié)調(diào)打造和諧職場(chǎng)環(huán)境
- 生態(tài)建筑引領(lǐng)未來(lái)商業(yè)趨勢(shì)
- 現(xiàn)代科技在股票市場(chǎng)分析中的應(yīng)用
- 校園餐飲消費(fèi)大數(shù)據(jù)洞察學(xué)生消費(fèi)習(xí)慣
- 2024年八年級(jí)生物下冊(cè) 6.2.1遺傳說(shuō)課稿 (新版)冀教版
- 2024年八年級(jí)物理下冊(cè) 8.1認(rèn)識(shí)壓強(qiáng)說(shuō)課稿 (新版)粵教滬版
- 14《普羅米修斯》(說(shuō)課稿)2024-2025學(xué)年-統(tǒng)編版語(yǔ)文四年級(jí)上冊(cè)
- 2024年五年級(jí)數(shù)學(xué)下冊(cè) 五 分?jǐn)?shù)除法練習(xí)五說(shuō)課稿 北師大版
- 2024-2025學(xué)年高中歷史 專題1 中國(guó)傳統(tǒng)文化主流思想的演變 3 宋明理學(xué)說(shuō)課稿 人民版必修3
- 2024-2025學(xué)年八年級(jí)物理下冊(cè) 第十章 從粒子到宇宙 10.1 認(rèn)識(shí)分子說(shuō)課稿 (新版)粵教滬版
- 冀教版小學(xué)英語(yǔ)六年級(jí)下冊(cè)全冊(cè)教案
- 2024人工智能開(kāi)源大模型生態(tài)體系研究報(bào)告
- 2024年中考語(yǔ)文復(fù)習(xí)分類必刷:非連續(xù)性文本閱讀(含答案解析)
- 緊密型縣域醫(yī)療衛(wèi)生共同體慢病管理中心運(yùn)行指南試行等15個(gè)指南
- YYT 0681.11-2014 無(wú)菌醫(yī)療器械包裝試驗(yàn)方法 第11部分:目力檢測(cè)醫(yī)用包裝密封完整性
- 遼寧省沈陽(yáng)市第七中學(xué)2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題
- 2024年湖南工業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)附答案
- 快速入門穿越機(jī)-讓你迅速懂穿越機(jī)
- 水利安全生產(chǎn)風(fēng)險(xiǎn)防控“六項(xiàng)機(jī)制”右江模式經(jīng)驗(yàn)分享
- 2024年四川省成都市高新區(qū)中考數(shù)學(xué)二診試卷
- 幼兒園衛(wèi)生保健開(kāi)學(xué)培訓(xùn)
評(píng)論
0/150
提交評(píng)論