版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
GenerativeAdversarialNetwork(GAN)RestrictedBoltzmannMachine:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RBM%20(v2).ecm.mp4/index.htmlGibbsSampling:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/MRF%20(v2).ecm.mp4/index.htmlOutlook:NIPS2016Tutorial:GenerativeAdversarialNetworksAuthor:IanGoodfellowPaper:s:///abs/1701.00160Video:YoucanfindtipsfortrainingGANhere:s://github/soumith/ganhacksReviewGenerationDrawing?WritingPoems?Review:Auto-encoderAscloseaspossibleNNEncoderNNDecodercodeNNDecodercodeRandomlygenerateavectorascodeImage?Review:Auto-encoderNNDecodercode2D-1.51.5
NNDecoder
NNDecoderReview:Auto-encoder-1.51.5NNEncoderNNDecodercodeinputoutputAuto-encoderVAENNEncoderinputNNDecoderoutputm1m2m3
Fromanormaldistribution
X+Minimizereconstructionerror
exp
MinimizeAuto-EncodingVariationalBayes,s:///abs/1312.6114ProblemsofVAEItdoesnotreallytrytosimulaterealimagesNNDecodercodeOutputAscloseaspossibleOnepixeldifferencefromthetargetOnepixeldifferencefromthetargetRealisticFakeTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3BinaryClassifierTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3GAN-DiscriminatorNNGeneratorv1Realimages:Discri-minatorv1image1/0(realorfake)SomethinglikeDecoderinVAERandomlysampleavector11110000GAN-GeneratorDiscri-minatorv1NNGeneratorv1Randomlysampleavector0.13UpdatingtheparametersofgeneratorTheoutputbeclassifiedas“real”(ascloseto1aspossible)Generator+Discriminator=anetworkUsinggradientdescenttoupdatetheparametersinthegenerator,butfixthediscriminator1.0v2GAN
–二次元人物頭像鍊成DCGAN:s://github/carpedm20/DCGAN-tensorflowGAN
–二次元人物頭像鍊成100roundsGAN
–二次元人物頭像鍊成1000roundsGAN
–二次元人物頭像鍊成2000roundsGAN
–二次元人物頭像鍊成5000roundsGAN
–二次元人物頭像鍊成10,000roundsGAN
–二次元人物頭像鍊成20,000roundsGAN
–二次元人物頭像鍊成50,000roundsBasicIdeaofGANMaximumLikelihoodEstimation
Likelihoodofgeneratingthesamples
MaximumLikelihoodEstimation
Itisdifficulttocomputethelikelihood.
BasicIdeaofGANGeneratorGGisafunction,inputz,outputxGivenapriordistributionPprior(z),aprobabilitydistributionPG(x)isdefinedbyfunctionGDiscriminatorDDisafunction,inputx,outputscalarEvaluatethe“difference”betweenPG(x)andPdata(x)ThereisafunctionV(G,D).
HardtolearnbymaximumlikelihoodBasicIdea
GivenG,whatistheoptimalD*maximizingGivenx,theoptimalD*maximizing
AssumethatD(x)canhaveanyvaluehere
Givenx,theoptimalD*maximizingFindD*maximizing:
aDbD0<<1
22
Jensen-Shannondivergence
Intheend……
0<<log2
Algorithm
Algorithm
DecreaseJS
divergence(?)DecreaseJS
divergence(?)Algorithm
DecreaseJS
divergence(?)
smaller
……
Don’tupdateGtoomuchInpractice…
Maximize
MinimizeCross-entropyBinaryClassifierOutputisD(x)Minimize–logD(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-D(x))
PositiveexamplesNegativeexamples
MaximizeMinimize
MinimizeCross-entropyBinaryClassifierOutputisf(x)Minimize–logf(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-f(x))
AlgorithmRepeatktimesLearningDLearningG
CanonlyfindlowerfoundofOnlyOnceObjectiveFunctionforGenerator
inRealImplementation
Realimplementation:labelxfromPGaspositive
SlowatthebeginningDemoThecodeusedindemofrom:s://github/osh/KerasGAN/blob/master/MNIST_CNN_GAN_v2.ipynbIssueaboutEvaluatingtheDivergenceEvaluatingJSdivergenceMartinArjovsky,
LéonBottou,TowardsPrincipledMethodsforTrainingGenerativeAdversarialNetworks,
2017,arXivpreprintEvaluatingJSdivergenceJSdivergenceestimatedbydiscriminatortellinglittleinformations:///abs/1701.07875WeakGeneratorStrongGeneratorDiscriminator
Reason1.Approximatebysampling
10=0
log2Weakenyourdiscriminator?CanweakdiscriminatorcomputeJSdivergence?Discriminator
Reason2.thenatureofdata
10=0
log2
UsuallytheydonothaveanyoverlapEvaluationBetterEvaluation
Better…………Notreallybetter……AddNoiseAddsomeartificialnoisetotheinputsofdiscriminatorMakethelabelsnoisyforthediscriminator
DiscriminatorcannotperfectlyseparaterealandgenerateddataNoisesdecayovertimeModeCollapseModeCollapseDataDistributionGeneratedDistributionModeCollapse
Whatwewant…Inreality…FlawinOptimization?
ModifiedfromIanGoodfellow’stutorial
Thismaynotbethereason(basedonIanGoodfellow’stutorial)SomanyGANs……ModifyingtheOptimizationofGANfGANWGANLeast-squareGANLossSensitiveGANEnergy-basedGANBoundary-seekingGANUnrollGAN……DifferentStructurefromtheOriginalGANConditionalGANSemi-supervisedGANInfoGANBiGANCycleGANDiscoGANVAE-GAN……ConditionalGANMotivationGeneratorScottReed,ZeynepAkata,XinchenYan,LajanugenLogeswaran,BerntSchiele,HonglakLee,“GenerativeAdversarialText-to-ImageSynthesis”,ICML2016TextImageScottReed,
ZeynepAkata,
SantoshMohan,
SamuelTenka,
BerntSchiele,
HonglakLee,“LearningWhatandWheretoDraw”,NIPS2016HanZhang,
TaoXu,
HongshengLi,
ShaotingZhang,
XiaoleiHuang,
XiaogangWang,
DimitrisMetaxas,“StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks”,arXivprepring,2016MotivationChallengeNNTextImage(apoint,notadistribution)Text:“train”NN
output
ConditionalGANG
conditionPriordistributionLearntoapproximateP(x|c)D(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基建金融相關(guān)行業(yè)投資方案
- 跨學(xué)科教學(xué)與綜合性學(xué)習(xí)計(jì)劃
- 加強(qiáng)內(nèi)部審核的主管工作總結(jié)計(jì)劃
- 提升崗位技能培訓(xùn)的有效性計(jì)劃
- 班級(jí)園藝計(jì)劃
- 營(yíng)銷培訓(xùn)課件-微信營(yíng)銷具體實(shí)施方案
- 大學(xué)生團(tuán)日活動(dòng)班會(huì)
- 2024-2025學(xué)年上學(xué)期七年級(jí)期末模擬試卷-考點(diǎn)大串講(2024冀教版)(解析版)-A4
- 急診醫(yī)學(xué)課件水、電解質(zhì)與酸堿平衡紊亂
- 《郵政消防安全培訓(xùn)》課件
- 2025年中考道德與法治一輪教材復(fù)習(xí)-九年級(jí)下冊(cè)-第一單元 我們共同的世界
- 【MOOC】中國(guó)電影經(jīng)典影片鑒賞-北京師范大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 陜西省西安市長(zhǎng)安區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期中地理試卷
- 企業(yè)破產(chǎn)律師服務(wù)協(xié)議
- 【MOOC】遺傳學(xué)-中國(guó)農(nóng)業(yè)大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 預(yù)防火災(zāi)消防安全培訓(xùn)
- 2024年中國(guó)建設(shè)銀行個(gè)人人民幣貸款合同版B版
- 《古希臘羅馬建筑》課件
- 2023年涼山州德昌縣衛(wèi)生系統(tǒng)事業(yè)單位考核招聘考試真題
- 第十五講-新時(shí)代與中華民族共同體建設(shè)-中華民族共同體概論教案
- 腫瘤科介入治療及護(hù)理
評(píng)論
0/150
提交評(píng)論