GAN-(v11)Special-Structure-(v6)李宏毅深度學(xué)習(xí)_第1頁(yè)
GAN-(v11)Special-Structure-(v6)李宏毅深度學(xué)習(xí)_第2頁(yè)
GAN-(v11)Special-Structure-(v6)李宏毅深度學(xué)習(xí)_第3頁(yè)
GAN-(v11)Special-Structure-(v6)李宏毅深度學(xué)習(xí)_第4頁(yè)
GAN-(v11)Special-Structure-(v6)李宏毅深度學(xué)習(xí)_第5頁(yè)
已閱讀5頁(yè),還剩62頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

GenerativeAdversarialNetwork(GAN)RestrictedBoltzmannMachine:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RBM%20(v2).ecm.mp4/index.htmlGibbsSampling:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/MRF%20(v2).ecm.mp4/index.htmlOutlook:NIPS2016Tutorial:GenerativeAdversarialNetworksAuthor:IanGoodfellowPaper:s:///abs/1701.00160Video:YoucanfindtipsfortrainingGANhere:s://github/soumith/ganhacksReviewGenerationDrawing?WritingPoems?Review:Auto-encoderAscloseaspossibleNNEncoderNNDecodercodeNNDecodercodeRandomlygenerateavectorascodeImage?Review:Auto-encoderNNDecodercode2D-1.51.5

NNDecoder

NNDecoderReview:Auto-encoder-1.51.5NNEncoderNNDecodercodeinputoutputAuto-encoderVAENNEncoderinputNNDecoderoutputm1m2m3

Fromanormaldistribution

X+Minimizereconstructionerror

exp

MinimizeAuto-EncodingVariationalBayes,s:///abs/1312.6114ProblemsofVAEItdoesnotreallytrytosimulaterealimagesNNDecodercodeOutputAscloseaspossibleOnepixeldifferencefromthetargetOnepixeldifferencefromthetargetRealisticFakeTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3BinaryClassifierTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3GAN-DiscriminatorNNGeneratorv1Realimages:Discri-minatorv1image1/0(realorfake)SomethinglikeDecoderinVAERandomlysampleavector11110000GAN-GeneratorDiscri-minatorv1NNGeneratorv1Randomlysampleavector0.13UpdatingtheparametersofgeneratorTheoutputbeclassifiedas“real”(ascloseto1aspossible)Generator+Discriminator=anetworkUsinggradientdescenttoupdatetheparametersinthegenerator,butfixthediscriminator1.0v2GAN

–二次元人物頭像鍊成DCGAN:s://github/carpedm20/DCGAN-tensorflowGAN

–二次元人物頭像鍊成100roundsGAN

–二次元人物頭像鍊成1000roundsGAN

–二次元人物頭像鍊成2000roundsGAN

–二次元人物頭像鍊成5000roundsGAN

–二次元人物頭像鍊成10,000roundsGAN

–二次元人物頭像鍊成20,000roundsGAN

–二次元人物頭像鍊成50,000roundsBasicIdeaofGANMaximumLikelihoodEstimation

Likelihoodofgeneratingthesamples

MaximumLikelihoodEstimation

Itisdifficulttocomputethelikelihood.

BasicIdeaofGANGeneratorGGisafunction,inputz,outputxGivenapriordistributionPprior(z),aprobabilitydistributionPG(x)isdefinedbyfunctionGDiscriminatorDDisafunction,inputx,outputscalarEvaluatethe“difference”betweenPG(x)andPdata(x)ThereisafunctionV(G,D).

HardtolearnbymaximumlikelihoodBasicIdea

GivenG,whatistheoptimalD*maximizingGivenx,theoptimalD*maximizing

AssumethatD(x)canhaveanyvaluehere

Givenx,theoptimalD*maximizingFindD*maximizing:

aDbD0<<1

22

Jensen-Shannondivergence

Intheend……

0<<log2

Algorithm

Algorithm

DecreaseJS

divergence(?)DecreaseJS

divergence(?)Algorithm

DecreaseJS

divergence(?)

smaller

……

Don’tupdateGtoomuchInpractice…

Maximize

MinimizeCross-entropyBinaryClassifierOutputisD(x)Minimize–logD(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-D(x))

PositiveexamplesNegativeexamples

MaximizeMinimize

MinimizeCross-entropyBinaryClassifierOutputisf(x)Minimize–logf(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-f(x))

AlgorithmRepeatktimesLearningDLearningG

CanonlyfindlowerfoundofOnlyOnceObjectiveFunctionforGenerator

inRealImplementation

Realimplementation:labelxfromPGaspositive

SlowatthebeginningDemoThecodeusedindemofrom:s://github/osh/KerasGAN/blob/master/MNIST_CNN_GAN_v2.ipynbIssueaboutEvaluatingtheDivergenceEvaluatingJSdivergenceMartinArjovsky,

LéonBottou,TowardsPrincipledMethodsforTrainingGenerativeAdversarialNetworks,

2017,arXivpreprintEvaluatingJSdivergenceJSdivergenceestimatedbydiscriminatortellinglittleinformations:///abs/1701.07875WeakGeneratorStrongGeneratorDiscriminator

Reason1.Approximatebysampling

10=0

log2Weakenyourdiscriminator?CanweakdiscriminatorcomputeJSdivergence?Discriminator

Reason2.thenatureofdata

10=0

log2

UsuallytheydonothaveanyoverlapEvaluationBetterEvaluation

Better…………Notreallybetter……AddNoiseAddsomeartificialnoisetotheinputsofdiscriminatorMakethelabelsnoisyforthediscriminator

DiscriminatorcannotperfectlyseparaterealandgenerateddataNoisesdecayovertimeModeCollapseModeCollapseDataDistributionGeneratedDistributionModeCollapse

Whatwewant…Inreality…FlawinOptimization?

ModifiedfromIanGoodfellow’stutorial

Thismaynotbethereason(basedonIanGoodfellow’stutorial)SomanyGANs……ModifyingtheOptimizationofGANfGANWGANLeast-squareGANLossSensitiveGANEnergy-basedGANBoundary-seekingGANUnrollGAN……DifferentStructurefromtheOriginalGANConditionalGANSemi-supervisedGANInfoGANBiGANCycleGANDiscoGANVAE-GAN……ConditionalGANMotivationGeneratorScottReed,ZeynepAkata,XinchenYan,LajanugenLogeswaran,BerntSchiele,HonglakLee,“GenerativeAdversarialText-to-ImageSynthesis”,ICML2016TextImageScottReed,

ZeynepAkata,

SantoshMohan,

SamuelTenka,

BerntSchiele,

HonglakLee,“LearningWhatandWheretoDraw”,NIPS2016HanZhang,

TaoXu,

HongshengLi,

ShaotingZhang,

XiaoleiHuang,

XiaogangWang,

DimitrisMetaxas,“StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks”,arXivprepring,2016MotivationChallengeNNTextImage(apoint,notadistribution)Text:“train”NN

output

ConditionalGANG

conditionPriordistributionLearntoapproximateP(x|c)D(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論