![河北省秦皇島市新世紀(jì)高級中學(xué)2023-2024學(xué)年高二下學(xué)期開學(xué)考試數(shù)學(xué)試卷_第1頁](http://file4.renrendoc.com/view11/M01/32/0F/wKhkGWX6Q0qAYu7mAAG2581omuY311.jpg)
![河北省秦皇島市新世紀(jì)高級中學(xué)2023-2024學(xué)年高二下學(xué)期開學(xué)考試數(shù)學(xué)試卷_第2頁](http://file4.renrendoc.com/view11/M01/32/0F/wKhkGWX6Q0qAYu7mAAG2581omuY3112.jpg)
![河北省秦皇島市新世紀(jì)高級中學(xué)2023-2024學(xué)年高二下學(xué)期開學(xué)考試數(shù)學(xué)試卷_第3頁](http://file4.renrendoc.com/view11/M01/32/0F/wKhkGWX6Q0qAYu7mAAG2581omuY3113.jpg)
![河北省秦皇島市新世紀(jì)高級中學(xué)2023-2024學(xué)年高二下學(xué)期開學(xué)考試數(shù)學(xué)試卷_第4頁](http://file4.renrendoc.com/view11/M01/32/0F/wKhkGWX6Q0qAYu7mAAG2581omuY3114.jpg)
![河北省秦皇島市新世紀(jì)高級中學(xué)2023-2024學(xué)年高二下學(xué)期開學(xué)考試數(shù)學(xué)試卷_第5頁](http://file4.renrendoc.com/view11/M01/32/0F/wKhkGWX6Q0qAYu7mAAG2581omuY3115.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年河北省秦皇島市新世紀(jì)高級中學(xué)高二(下)開學(xué)數(shù)學(xué)試卷一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn)(-2,3)到直線l:3x+4y+3=0A.2 B.95 C.85 2.已知雙曲線C:x2-A.y=13x B.y=±13.“今有城,下廣四丈,上廣二丈,高五丈,袤兩百丈,“這是我國古代數(shù)學(xué)名著《九章算術(shù)》卷第五“商功”中的問題.意思為“現(xiàn)有城(如圖,等腰梯形的直棱柱體),下底長4丈,上底長2丈,高5丈,縱長200丈(1丈=10尺)”,則該問題中“城”的體積等于(
)A.3×105立方尺 B.6×105立方尺 C.6×104.(文)橢圓的一個(gè)焦點(diǎn)與短軸的兩端點(diǎn)構(gòu)成一個(gè)正三角形,則該橢圓的離心率為(
)A.33 B.12 C.5.圓C1:x2+y2=1與圓CA.1條 B.2條 C.3條 D.4條6.已知點(diǎn)F是拋物線C:x2=2py(p>0)的焦點(diǎn),P(x0A.2 B.4 C.6 D.87.雙曲線x29-y216=1的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若A.85 B.165 C.4 8.已知直線l:3x+4y-11=0與橢圓C:x24+y2m2A.433 B.22 二、多選題:本題共4小題,共20分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。9.方程x2+y2+2axA.-1 B.1 C.0 D.10.已知直線l:3x-yA.直線l的傾斜角是30°
B.過點(diǎn)(3,1)與直線l平行的直線是3x-y-2=0
C.直線3x-11.方程x24-k+y2A.曲線C可以是圓 B.若1<k<4,則曲線C為橢圓
C.曲線C可以表示拋物線 D.若曲線C為雙曲線,則k12.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,M,N分別為棱A1DA.異面直線AC與BM所成角的余弦值為23
B.若△AC1P的面積為3,則動點(diǎn)P的軌跡為橢圓的一部分
C.若點(diǎn)P到直線BC與直線C1D1的距離相等,則動點(diǎn)P的軌跡為拋物線的一部分
D.過直線
三、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的準(zhǔn)線方程為x=-2,則拋物線的標(biāo)準(zhǔn)方程為______.14.已知直線l:3x+y-6=0和圓心為C的圓x2+y215.設(shè)P為橢圓x29+y24=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是該橢圓的兩個(gè)焦點(diǎn),若|PF16.設(shè)點(diǎn)P是曲線x24-y25=1右支上一動點(diǎn),F(xiàn)為左焦點(diǎn),點(diǎn)Q是圓x四、解答題:本題共6小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟。17.(本小題10分)
已知△ABC頂點(diǎn)A(3,0)、B(-1,-3)、C(1,1).
(Ⅰ)求BC邊上中線所在的直線方程;
(Ⅱ)求18.(本小題12分)
已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為e=22且橢圓經(jīng)過點(diǎn)(2,-2).
(1)求橢圓C19.(本小題12分)
已知圓C經(jīng)過點(diǎn)A(1,2)和B(5,-2),且圓C關(guān)于直線2x+y=0對稱.
(1)求圓C的方程;
(2)過點(diǎn)D(-3,1)作直線l20.(本小題12分)
如圖,已知正三棱柱ABC-A1B1C1,D是AB的中點(diǎn),E是C1C的中點(diǎn),且AB=1,AA1=2.
21.(本小題12分)
已知雙曲線C的方程為x2a2-y2b2=1(a>0,b>0),離心率為2,右頂點(diǎn)為(1,0).
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)過E22.(本小題12分)
已知拋物線D的頂點(diǎn)是橢圓x24+y23=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.
(1)求拋物線D的方程;
(2)已知?jiǎng)又本€l過點(diǎn)P(4,0),交拋物線D于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O為PQ中點(diǎn),求證:∠AQP=∠BQP;
(3)是否存在垂直于答案和解析1.【答案】B
【解析】解:點(diǎn)(-2,3)到直線l:3x+4y+3=0的距離d=3×(-2)+4×3+39+16=2.【答案】D
【解析】解:雙曲線C:x2-y29=1,可得a=1,b=3,
所以漸近線方程為3x±y=0,即3.【答案】D
【解析】解:由題意,計(jì)算直四棱柱的底面積為S=12×(20+40)×50=1500(平方尺);
因?yàn)橹彼睦庵母邽?00丈=2000尺,
所以問題中“城”的體積即直四棱柱的體積為1500×2000=3000000=3×106(立方尺).
4.【答案】C
【解析】解:由題意,∵橢圓的短軸的兩個(gè)端點(diǎn)與橢圓的一個(gè)焦點(diǎn)構(gòu)成正三角形
∴3b=c,3b2=c2,
∵a2=b2+c2=43c2
∴e=5.【答案】C
【解析】解:由圓C1:x2+y2=1與圓C2:x2+y2-6y+5=0,
可得圓C2的標(biāo)準(zhǔn)方程為x2+(y-3)2=4,圓心坐標(biāo)為(0,3),半徑為2.
圓C16.【答案】C
【解析】解:由拋物線的定義可知,|PF|=1+p2=4,所以p=6.
故選:7.【答案】B
【解析】解:設(shè)點(diǎn)P(x,y),
由雙曲線x29-y216=1可知F1(-5,0)、F2(5,0),
∵PF1⊥PF2,
∴y-0x+5?y-0x-5=-1,
∴x2+y2=25,8.【答案】B
【解析】解:如圖所示,
已知直線l:3x+4y-11=0與橢圓C:x24+y2m2=1交于A,B兩點(diǎn),點(diǎn)P(1,2)恰為弦AB的中點(diǎn),
依題意,直線l的斜率為-34,設(shè)A(x1,y1),B(x2,y2),
則y1-y2x1-x2=-9.【答案】AC
【解析】解:方程x2+y2+2ax+2ay+2a2+a-1=0,即為
(x+10.【答案】BC
【解析】解:直線l:3x-y+1=0,
對于A:直線的斜率tanθ=3,由于θ∈[0,π),故θ=60°,故A錯(cuò)誤;
對于B:設(shè)過點(diǎn)(3,1)且與直線l平行的直線為3x-y+t=0,由于點(diǎn)(3,1)滿足該直線,故t=-2;
所以所求的直線方程為3x-y-2=0,故B正確;
對于C:由于直線l:3x11.【答案】AD
【解析】解:對于A,若曲線C是圓,則4-k=k-1>0,解得k=52,故A正確;
對于B,若曲線C為橢圓,則4-k>0k-1>04-k≠k-1,解得1<k<4且k≠52,故B錯(cuò)誤;
對于C,顯然不可能為拋物線,故12.【答案】BCD
【解析】解:如圖所示,以D為原點(diǎn),以DA、DC、DD1所在的直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,
則A(2,0,0),C(0,2,0),B(2,2,0),M(1,0,2),可得AC=(-2,2,0),BM=(-1,-2,2),
所以cos<AC,BM>=|AC?BM||AC|?|BM|=28?9=26,故A項(xiàng)錯(cuò)誤;
設(shè)P到AC1的距離為h,則12|AC1|?h=3,解得h=1,所以點(diǎn)P位于以AC1為中軸線,半徑為1的圓柱面上,
又因?yàn)镻位于平面BCC1B1上,所以P位于平面BCC1B1與圓柱面的交線上,
根據(jù)圓柱面與平面的位置關(guān)系,可得P的軌跡為橢圓的一部分,故B項(xiàng)正確;
由正方體的性質(zhì),可知點(diǎn)P到直線C1D1的距離等于|PC1|,即P到點(diǎn)C1與P到直線BC的距離相等,
根據(jù)拋物線的定義,則動點(diǎn)P的軌跡為拋物線的一部分,故C項(xiàng)正確;
取AD中點(diǎn)H,則易得MH=2,且MH⊥平面ABCD,
可知當(dāng)HN與平面α和底面ABCD的交線垂直時(shí),過直線MN的平面α與面ABCD所成角最小,
因此HN⊥AC,且平面13.【答案】y2【解析】解:由題意,設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=2px(p>0),準(zhǔn)線方程是x=-p2,
∵拋物線的準(zhǔn)線方程為x=-2,
∴p2=2,解得p=4,
故所求拋物線的標(biāo)準(zhǔn)方程為y214.【答案】10【解析】解:圓x2+y2-2y-4=0化為標(biāo)準(zhǔn)方程為x2+(y-1)2=5,
∴圓心C(0,1),r=5,
又∵直線l:315.【答案】4
【解析】解:由橢圓的方程可知:|PF1|+|PF2|=2a=6,b=2,c=5,
由|PF1|:|PF2|=2:1,
則|PF1|=4,|PF2|=2,丨F1F2丨=25,
由|PF116.【答案】8
【解析】解:由雙曲線的方程可得a=2,b=5,則c=a2+c2=4+5=3,
設(shè)雙曲線的右焦點(diǎn)F',則F(3,0),
圓x2+(y-4)2=1的圓心C(0,4),半徑r=1,
由題意可得|PF|+|PQ|=2a+|PF'|+|PQ|≥4+|17.【答案】解:(I)設(shè)BC的中點(diǎn)為D,
則D(0,-1),
∵A(3,0),
∴kAD=-1-00-3=13,
故BC邊上中線所在的直線方程為y=13x-1,即x-3【解析】(I)先求出BC的中點(diǎn),再結(jié)合直線的斜率公式,以及點(diǎn)斜式方程,即可求解.
(II18.【答案】解:(1)由題意可得:e=ca=22,4a2+2b2=1,a2=b2+c2,
解得a=22,b=c=2,
∴橢圓C的方程為x2【解析】(1)根據(jù)橢圓的離心率和所過點(diǎn)求得a,b,c,從而求得橢圓C的方程.
(2)求得直線l的方程并與橢圓方程聯(lián)立,求得A,B兩點(diǎn)的坐標(biāo)即可求解.
本題考查了橢圓的性質(zhì)和直線與橢圓的位置關(guān)系的應(yīng)用,屬于中檔題.19.【答案】解:(1)已知圓C經(jīng)過點(diǎn)A(1,2)和B(5,-2),
則線段AB的垂直平分線方程為:y=x-3,即x-y-3=0,
又圓心在直線2x+y=0上,
聯(lián)立2x+y=0x-y-3=0,解得x=1y=-2,
所以其圓心為C(1,-2),R=|AC|=4,
所以圓C的標(biāo)準(zhǔn)方程(x-1)2+(y【解析】(1)先求得線段AB的垂直平分線方程,與2x+y=0聯(lián)立,求得圓心即可;
(2)若直線l的斜率存在,方程可設(shè)為y=20.【答案】解:(1)證明:取A1B的中點(diǎn)F,連結(jié)EF、DF,
∵D、F分別是AB,A1B的中點(diǎn),∴DF-//12A1A,
∵A1A-//C1C,E是C1C的中點(diǎn),∴DF-//EC,
∴四邊形CDEF是平行四邊形,∴CD-//EF,
∵CD?平面A1EB,EF?平面A1EB,
∴CD/?/平面A1EB.
(2)解:∵△ABC是正三角形,D是AB的中點(diǎn),∴CD⊥AB,
∵在正三棱柱ABC-A1B1C1中,A1A⊥平面ABC,
∴A1A⊥CD,
由(1)知DF//A1A,∴CD、BD、DF兩兩垂直,
∴以D為原點(diǎn),DB、DC、DF所在直線分別為x,y,【解析】(1)取A1B的中點(diǎn)F,連結(jié)EF、DF,推導(dǎo)出四邊形CDEF是平行四邊形,從而CD-//EF,由此能證明CD/?/平面A1EB.
(2)推導(dǎo)出CD、BD、DF兩兩垂直,以D為原點(diǎn),DB、DC、DF所在直線分別為x,21.【答案】解:(1)由離心率e=ca=2,又c2=a2+b2,所以b2=3a2,
又右頂點(diǎn)為(1,0),所以a2=1,所以b2=3,
故雙曲線的標(biāo)準(zhǔn)方程為x2-y23=1.
(2)設(shè)直線l的方程為y=kx+2,設(shè)M(x1,y1),N(x2,y【解析】(1)根據(jù)題意建立a,b,c的方程組即可求解;
(2)利用韋達(dá)定理確定k2的取值范圍,再建立EM?EN22.【答案】(本小題滿分14分)
(1)解:由題意,可設(shè)拋物線方程為y2=2px(p>0).
由a2-b2=4-3=1,得c=1.
∴拋物線的焦點(diǎn)為(1,0),∴p=2.
∴拋物線D的方程為y2=4x.…(4分)
(2)證明:設(shè)A(x1,y1),B(x2,y2),
由于O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級歷史人教版下冊聽課評課記錄:第5課 三大改造
- 林地長期承包合同范本
- 鄉(xiāng)鎮(zhèn)精裝修商鋪出租合同范本
- 儲存場地租賃合同范本
- 廣告公司材料采購合同范本
- 二零二五年度無子女離婚協(xié)議書及子女教育資助合同
- 二零二五年度酒店會議室場地租賃及配套交通合同
- 二零二五年度酒吧租賃合同合同簽訂后的租賃物維護(hù)責(zé)任
- 2025年度商鋪轉(zhuǎn)讓三方合同附品牌使用權(quán)及營銷支持
- 夏令營代理商合作協(xié)議書范本
- 三星SHP-DP728指紋鎖說明書
- 預(yù)應(yīng)力錨索張拉及封錨
- 烤煙生產(chǎn)沿革
- GB 1886.227-2016食品安全國家標(biāo)準(zhǔn)食品添加劑嗎啉脂肪酸鹽果蠟
- 毛澤東思想課件-第七章 毛澤東思想的活的靈魂
- 公共關(guān)系效果的評估課件
- 建筑施工安全員理論考核試題與答案
- 高速公路用地勘測定界及放線定樁技術(shù)標(biāo)書
- 華萊士標(biāo)準(zhǔn)化體系
- 快捷smt全自動物料倉儲方案
- keysight眼圖和抖動噪聲基礎(chǔ)知識與測量方法
評論
0/150
提交評論