2024 1月-3月各省市一模壓軸新題型匯編 (解析)版_第1頁(yè)
2024 1月-3月各省市一模壓軸新題型匯編 (解析)版_第2頁(yè)
2024 1月-3月各省市一模壓軸新題型匯編 (解析)版_第3頁(yè)
2024 1月-3月各省市一模壓軸新題型匯編 (解析)版_第4頁(yè)
2024 1月-3月各省市一模壓軸新題型匯編 (解析)版_第5頁(yè)
已閱讀5頁(yè),還剩85頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

段OB分別與圓O相交于點(diǎn)M、N.請(qǐng)說(shuō)明理由.2=2px(p>0(,故xp=|PF|-=-,∴y=2p-,x+y=-2+2p-=3,.∵直線(xiàn)AB與圓O相切,2=.2得y2-2ty-2m=0.∴Δ=4t2+8m=+8m-4>0,且y1+y2=2t,y1y2=-2m.∴y1y2=-2m<0.t2=≥0∵S△OMN=|OM||ON|sin∠MON=×3×3sin∠AOB=sin∠AOB≤成立,11?sin∠AOB=1,0<∠AOB<π,∴?=0.∴?=+y1y2=m2-2m=0,解得m=0或m=2.再由m≥3得m=2. 數(shù)列{an{同時(shí)滿(mǎn)足an≤,則稱(chēng)數(shù)列{an{為γ數(shù)列.+1-an|=1,得an+1-an≤1,2025=(a2025-a2024(+(a2024-a2023(+?(a2-a1(+a1≤2024,當(dāng)且僅當(dāng)an+1-an=1時(shí)取等號(hào).n+1-an=1,故數(shù)列{an{是遞增數(shù)列.n=b2nn<cn+1,知數(shù)列{cn{是單調(diào)遞增數(shù)列,故數(shù)列{bn{的偶數(shù)項(xiàng)構(gòu)成單調(diào)遞增數(shù)列,2=-1,b4=0,故當(dāng)b2n≥0時(shí),有n≥2.下面證明數(shù)列{bn{中相鄰兩項(xiàng)不可能同時(shí)為非負(fù)數(shù).i+1-bi|=i,i+1-bi=i,則有bi+1=bi+i≥i>,與條件矛盾;i+1-bi=-i,則有bi=bi+1+i≥i>,與條件矛盾;222n≥0,對(duì)n≥2成立,故n≥2時(shí),b2n-1≤0,b2n+1≤0,即b2n>b2n-1,b2n>b2n+1,2n-b2n-1=2n-1,b2n-1-b2n-2=-(2n-2(,故(b2n-b2n-1(+(b2n-1-b2n-2(=1,2n-b2n-2=1,n≥2,即cn-cn-1=1,n≥2.又c1=b2=-1,c2=b4=0,所以數(shù)列{cn{是c1=-1,公差為1的等差數(shù)列,所以cn=-1+(n-1(=n-2. f({an{(=a1+a2x+?+anxn-1+?,x∈R.定義運(yùn)算?:若{an{,{bn{∈S,則{an{?{bn{f({an{?{bn{(=f({an{(?f({bn{(.4表示m4;(2)證明:({an{?{bn{(?{cn{={an{?({bn{?{cn{(;n=2=n{={an{?{bn{,證明:d200<.解析:(1)因?yàn)閒({an{?{bn{(=f({an{(?f({bn{(=(a1+a2x+a3x2+a4x3?((b1+b2x+b3x2+b4x3?(且f({mn{(=m1+m2x+m3x2+m4x3+?,所以,由{an{?{bn{={mn{可得m4x3=(a1b4+a2b3+a3b2+a4b1)x3,所以m4=a1b4+a2b3+a3b2+a4b1.所以f({an})?f({bn})?f({cn})=f({an}?{bn})?f({cn})又因?yàn)閒({an{(?f({bn{(?f({cn{(=f({an{(?[f({bn{(?f({cn{([=f({an})?f({bn}?{cn})=f({an}?({bn}?{cn}))所以f(({an}?{bn})?f{cn})=f({an}?({bn}?f{cn})),所以({an{?{bn{(?{cn{={an{?({bn{?{cn{(.n因?yàn)?a1+a2x+?+anxn-1+?)(b1+b2x+?+bnxn-1+?)=d1+d2x+?+dnxn-1+?,所以dnxn-1=a1(bnxn-1)+?+akxk-1(bn+1-kxn-k)+?+an-1xn-2(b2x)+anxn-1b1,所以dn=a1bn+a2bn-1+?+akbn+1-k+?+an-1b2+anb1,200=akb201-k=akb201-k+1akb201-k=akb201-k=,33所以d200=1+-,=-=-<.C;則經(jīng)過(guò)2秒機(jī)器人位于區(qū)域Q的概率為p1p3設(shè)經(jīng)過(guò)n秒機(jī)器人位于區(qū)域Q的概率Pn, 6 6故經(jīng)過(guò)n秒機(jī)器人位于區(qū)域P的概率為1-2Pn, 若第n秒機(jī)器人位于區(qū)域P,則第n+ 若第n秒機(jī)器人位于區(qū)域Q1,則第n+ 4455則有Pn+2=Pn+Pn+(1-2Pn(,即Pn+2=+Pn,令Pn+2+λ=(Pn+λ(,即Pn+2=Pn-λ,即有λ=-,即有Pn+2-=Pn-,則=,故有=、=、?、=,-=Pn-=-1×-=-?即Pn=-?, min{a,b{=+min{an+1,an+2}=max{an+1,an+2}.3=3***n≤A.n=max{an+1,an+2}-min{an+1,an+2},顯然an≥0;故a1=max{a2,a3}-min{a2,a3}=1;2=max{a3,a4}-min{a3,a4}=2,3-a4=2或a4-a3=2,則a4=1或a4=5.∵max{an+1,an+2{≥min{an+1,an+2{,n=max{an+1,an+2{-min{an+1,an+2{≥0,k+1≤ak,ak+2≤ak,∴max{ak+1,ak+2{≤ak.k=max{ak+1,ak+2{-min{ak+1,ak+2{≤max{ak+1,ak+2{k≤max{ak+1,ak+2{≤ak,∴max{ak+1,ak+2{=ak,∴min{ak+1,ak+2{=0,①ak+1=0,ak+2≠0時(shí),ak=max{ak+1,ak+2{-min{ak+1,ak+2{=ak+2≠0ak-1=max{ak,ak+1{-min{ak,ak+1{=ak=ak+2≠0am+am+1>(n2-m)am+1=(ak-2=max{ak-1,ak{-min{ak-1,ak{=ak-ak=0ak-3=max{ak-2,ak-1{-min{ak-2,ak-1{=ak-0=ak=ak+2≠0②ak+2=0,ak+1≠0時(shí),ak=max{ak+1,ak+2{-min{ak+1,ak+2{=ak+1≠0,ak-1=max{ak,ak+1{-min{ak,ak+1{=ak+1-ak+1=0,ak-2=max{ak-1,ak{-min{ak-1,ak{=ak+1≠0,∴當(dāng)p=k+3m-1,m∈Z,且p>0時(shí),ap=0.③ak+1=0且ak+2=0時(shí),ak=0,p的集合為N*n=max{an+1,an+2}-min{an+1,an+2}>0,∴an+1≠an+2;設(shè)S={n|an>an+1,n∈N*},①若S=?,則a1≤a2,ai<ai+1(i≥2,i∈N*),對(duì)任意A>0,取n1=①+2([x]表示不超過(guò)x的最大整數(shù)),當(dāng)n>n1時(shí),an=(an-an-1)+(an-1-an-2)+?+(a3-a2)+a2=an-2+an-3+?+a1+a2≥(n-1)a1>(n1-1)an=+1a1>?a1=A;n>an+1,n∈N*},am+i<am+i+1(i∈N*),對(duì)任意A>0,取n2=+m+1([x]表示不超過(guò)x的最大整數(shù)),當(dāng)n>n2時(shí),an=(an-an-1)+(an-1-an-2)+?+(am+2-am+1)+am+1=an-2+an-3+?+am+am+1≥(n-m)+1am+1>m+1=A;=min{n|an>an+1,n∈N*},pi+1=min{n|an>an+1,n>pi}(i∈N*),若pi+1-pi=1,則ap>ap+1>ap+2,又ap<max{ap+1,ap+2},矛盾;故pi+1-pi≥2(i∈N*);記mi=ap+1(i∈N*);當(dāng)pi+1-pi=2時(shí),ap>ap+1,ap+1<ap+2,ap+2>ap+3;p+1=ap+2-ap+3,所以mi+1=ap+1=a(p+2)+1=ap+3=ap+2-ap+1=ap>ap+1=mi;當(dāng)pi+1-pi≥3時(shí),ap>ap+1,ap+1<ap+2<?<ap,ap>ap+1p-1=ap-ap+1,故mi+1=ap+1=ap-ap-1=ap-2≥ap=mi;p=ap+2-ap+1,故ap+2=ap-ap+1=ap+mi+1≥ap+m1≥ap+2+m1,66故對(duì)任意A>0,取n3=+1,當(dāng)k>n3時(shí),ap+2=(ap+2-ap+2)+(ap+2-ap+2)+?+(ap+故對(duì)任意A>0,取n3=+ap+2≥+ap+2≥(k-1)m1+ap+2>km1>(1=A;*n≤A.661e2=.2=2,2=2,=2=2,=1,C2的方程為+y2=1.故C1的方程為x2-2-y2=1,即有x-y可得k1k2==2為定值.(2k+1(x2+4kx+2(k-1(=0,Δ>0恒成立,x1+x2=,可求得M,,則k=-=-2(=-=-k2+1((k1+k2((2k1k2+1((=-=-8kk+2(k+k(8kk+2[(k8kk+2(k+k(7k2=2可得:k=-,點(diǎn)P在第一象限內(nèi),故k2>k1>0,k=-≥-=-當(dāng)且僅當(dāng)=2(k1+k2(,即k1+k2=23時(shí)取等號(hào),而k1+k2>2k1k2=22,故等號(hào)可以取到.可解得k1=3-1,k2=3+1,70(為雙曲線(xiàn)-y2=1上的動(dòng)點(diǎn).70(在雙曲線(xiàn)-y2=1上,得-y=1,即y=-1消去y得-x2+x0x-(1+y)=0,則x2-2x0x+x=0,顯然Δ=4x-4x=0,0y=1與雙曲線(xiàn)-y2=1相切于點(diǎn)(x0,y0(,所以過(guò)雙曲線(xiàn)-=1(a>0,b>0)上一點(diǎn)(x0,y0(的切線(xiàn)方程為-2x-a2y=a2b2,-=1-=1消去y得:-=1-=1=1.證明如下:88y0y-=2y2x2y22=1(a>0,b>0)上一點(diǎn)(x0,y0(的切線(xiàn)方程為-=1.x--1消去y得:-x2+2mx-a2=0,由m2-n2=1,得x2-2mx+a2=0,則t==n,即點(diǎn)T與點(diǎn)N重合,所以點(diǎn)T為線(xiàn)段PQ的中點(diǎn).8渡的新時(shí)期,為研究變量和函數(shù)提供了重要的方法和手段.對(duì)于函數(shù)f(x(=(x>0),f(x(在區(qū)間[a,b[8域(稱(chēng)為曲邊梯形ABQP)的面積,根據(jù)微積分基本定理可得dx=lnb-lna,因?yàn)榍吿菪蜛BQP的2>.+①證明:對(duì)任意兩個(gè)不相等的正數(shù)x1,x2,曲線(xiàn)y=f(x(在(x1,f(②當(dāng)b=-1時(shí),若不等式f(x(≥2sin(x-1(恒成立99過(guò)點(diǎn)M,作f(x(的切線(xiàn)分別交AP,BQ于M1,M2,因?yàn)镾曲邊梯形ABQP>S梯形ABMM,-a(,即<.(2)解:①由函數(shù)f(x(=ax2+bx+xlnx,可得f,(x(=2ax+lnx+b+1,不妨設(shè)0<x1<x2,曲線(xiàn)y=f(x(在(x1,f(x1((處的切線(xiàn)方程為:y-f(x1(=f,(x1((x-x1(,即y=f,(x1(x+f(x1(-x1f,(x1(同理曲線(xiàn)y=f(x(在(x2,f(x2((處的切線(xiàn)方程為l2:y=f,(x2(x+f(x2(-x2f,(x2(,=1(=f(x2(-x2f,(x2(,=0,兩式消去a,可得lnx2-lnx1-2=0,整理得ln--x1=x2x1,②當(dāng)b=-1時(shí),不等式f(x(≥2sin(x-1(恒成立,所以h(x(=ax2-x+xlnx-2sin(x-1(≥0在(0,+∞(恒成立,所以h(1(≥0?a≥1,因?yàn)閍≥1,所以h(x(≥x2-x+xlnx-2sin(x-1(設(shè)H(x(=x2-x+xlnx-2sin(x-1(,H,(x(=2x+lnx-2cos(x-1(≥2,,lnx≥0,-2cos(x-1(≥-2知H,(x(≥0恒成立,即H(x(在[1,+∞(為增函數(shù),所以H(x(≥H(1(=0成立; x x+2sin(x-1(,由2sin(x-1(≥-2,>0知G,(x(≥0恒成立,即G(x(=H,(x(在(0,1(為增函數(shù).所以H,(x(<H,(1(=0,即H(x(在(0,1(為減函數(shù),所以H(x(>H(1(=0成立,92=2x的焦點(diǎn),過(guò)F的直線(xiàn)交拋物線(xiàn)于A,B兩9設(shè)直線(xiàn)AB的方程為x=my+,A(x1,y1(,B(x2,y2(,2+得y2-2my-1=0,fΔ=4m2+4>0y2=-1y1+y2=2m,所以y2=-1不妨設(shè)A在第一象限,B在第四象限,對(duì)于y=-2x,yI=-;可得l的斜率為--=所以l的方程為y-y2=(x-x2(,即為y=x+.令x=0得E直線(xiàn)OA的方程為y=x=1x=-2y2x,又F,0所以==|EF|得證. y2可得過(guò)點(diǎn)B的l的垂線(xiàn)斜率為 y2可得過(guò)點(diǎn)B的l的垂線(xiàn)斜率為-y2,所以過(guò)點(diǎn)B的l的垂線(xiàn)的方程為y-y2=-y2(x-x2(,即y=-y2x+y2(1+,(y=-2y2xy=-y2x+y2(1+,解得G的縱坐標(biāo)為yG=y2(y=-2y2xyG-y1|(*).-y1|2=y2+2=,yG-y1|=-|y2(y+2(-y1|=.由D-,y22(知DB與x軸平行,又DF的斜率為-y2,BG的斜率也為-y2,所以DF與BG平行,(1)用t表示點(diǎn)M的橫坐標(biāo)x和縱坐標(biāo)y;依題意,y=1-cost,|OB|==t,則x=|OB|-sint=t-sint,所以x=t-sint,y=1-cost.由復(fù)合函數(shù)求導(dǎo)公式y(tǒng)=y?x及(1)得y===,因此tanθ=,而1+cos2θ=2cos2θ===1sit2+1=222=1-cost=y0,依題意,F(xiàn)(t)=(1-cost)2+sin2t=2-2cost=2sin.由0≤≤π,得sin≥0,則F(t)=2sin,于是F(t)=-4cos+c(c為常數(shù)),則F(2π)-F(0)=(-4cosπ+c)-(-4cos0+c)=8,>0,函數(shù)fx=ex1-x,Hx=lnx+.(1)求fx、Hx的單調(diào)區(qū)間;(2)討論直線(xiàn)y=x與曲線(xiàn)y=lnx-1的公共點(diǎn)的個(gè)數(shù);,若0<x1<x2,且Fx1=Fx2,則e2-2ex1+x2-a≥0,求解析:(1)函數(shù)fx的定義域?yàn)?∞,+∞.∵fx=ex1-x,∴fx=ex1-x-ex=-xex,函數(shù)Hx=lnx+的定義域?yàn)?,+∞,Hx=-=,常數(shù)k>0,(2)設(shè)hx=x-lnx,它的定義域?yàn)?,+∞,hx=1-=,∴hx的最小值為h1=1-ln1=1,∴hx=x-lnx=-1不成立,即方程x-lnx=-1無(wú)實(shí)數(shù)解,故方程x=lnx-1無(wú)實(shí)數(shù)解,∴直線(xiàn)y=x與曲線(xiàn)y=lnx-1無(wú)公共點(diǎn);(3)根據(jù)已知,F(xiàn)x=ex-lnx[1-x-lnx[的定義域?yàn)?,+∞,設(shè)t=hx=x-lnx,由(2)得t≥1,且Fx=f[hx[=et1-t=ft,由0<x1<x2,記hx1=t1,hx2=t2,則t1≥1,t2≥1,由F(x1(=F(x2(得f(t1(=f(t2(,1-lnx1=t1,x2-lnx2=t1,2lnx1=x2-x1,得,,若0<x1<x2,且F(x1(=F(x2(,則(e2-2e(x1+x2-a≥0,??u>1,(u+e2-2e(?-a≥0,??u>1,(u+e2-2e(lnu-a(u-1(≥0,設(shè)D(u(=(u+e2-2e(lnu-a(u-1(,則D(e(=(e+e2-2e(lne-a(e-1(≥0,解得a≤e,由a≤e得-a≥-e,由u≥1得u-1≥0,∴D(u(=(u+e2-2e(lnu-a(u-1(≥(u+e2-2e(lnu-e(u-1(,設(shè)P(u(=(u+e2-2e(lnu-e(u-1(,則P(1(=0,P(e(=0,P'(u(=lnu++1-e,2-2e=e(e-2(>1,u(=lnu++1-e在[1,e2-2e[上單調(diào)遞減,在[e2-2e,+∞(上單調(diào)遞增;由e2-2e<e得P'(e2-2e(<P'(e(=0,=e2-3e+1=e(e-2(+1-e>0.7e+1-e=1-0.3e>1-0.3×2.8>0,0時(shí),P(u(單調(diào)遞增,故P(u(≥P(1(=0;,e[時(shí),P(u(單調(diào)遞減,故P(u(≥P(e(=0;∴?u>1,D(u(≥P(u(≥0.x=1+x+++?++?其中x≥1+x;<g(x(;解析:(1)設(shè)hx=ex-x-1,則h,x=ex-1.所以hx在-∞,0上單調(diào)遞減,在0,+∞上單調(diào)遞增.因此,hx≥h0=0,即ex≥1+x.x=1+x+++++?++?,①于是e-x=1-x+-+-+?+(-1)n+?,②fx==x+++?++?,gx==1+++?++?,=1+++?++?<1+++?++?=gx.即<gx.(3)Fx=gx-a1+=-aF,x=-ax,設(shè)Gx=-ax,G,x=-a.x所以當(dāng)a≤1時(shí),G,x≥1-a≥0,所以F,x在R上單調(diào)遞增.又因?yàn)镕,x是奇函數(shù),且F,0=0,所以當(dāng)x>0時(shí),F(xiàn),x>0;當(dāng)x<0時(shí),F(xiàn),x<0.所以Fx在-∞,0上單調(diào)遞減,在0,+∞上單調(diào)遞增.因此,x=0是Fx的極小值點(diǎn).下面證明:當(dāng)a>1時(shí),x=0不是Fx的極小值點(diǎn).lna=-a=a+-a=-a(<0,又因?yàn)镚,x是R上的偶函數(shù),且G,x在0,+∞上單調(diào)遞增,所以當(dāng)x∈-lna,lna時(shí),G,x<0.x在-lna,lna上單調(diào)遞減.又因?yàn)镕,x是奇函數(shù),且F,0=0,所以當(dāng)-lna<x<0時(shí),F(xiàn),(x(>0;當(dāng)0<x<lna時(shí),F(xiàn),(x(<0.所以F(x(在(-lna,0(上單調(diào)遞增,在(0,lna(上單調(diào)遞減.因此,x=0是F(x(的極大值點(diǎn),不是F(x(的極小值點(diǎn).數(shù)部分,稱(chēng){x}=x-[x]為x的小數(shù)部分.*iiii≤n,n>1,n∈N*)的指數(shù)ai=+++?=.〈-〈=---=--(-1(==0.25;*i的倍數(shù)中不大于n的正整數(shù)的個(gè)數(shù)為,記為n依此這樣進(jìn)行下去,則質(zhì)因數(shù)pi的指數(shù)ai=n1+n2+n3+?=+++?=1,即得證.*(階導(dǎo)數(shù)都存在時(shí),f(x(=f(0(+f'(0(x+f八(x2+x3+?+xn+?.注:f八(x(表示f(x(的2階導(dǎo)數(shù),即為f'(x(的導(dǎo)數(shù),f(n((x((n≥3(表示f(x(的n階導(dǎo)數(shù),該公式也稱(chēng)麥克勞林公式.*>n-.解析:(1)令f(x(=sinx,則f'(x)=cosx,f八(x)=-sinx,f(3((x(=-cosx,f(4((x(=sinx,?f(3((0(=-1,f(4((0(=0,?由麥克勞林公式可得sinx=x-+-+?,故sin=-+?≈0.48.令g(x(=cosx-1+,x≥0,令h(x(=g'(x(=-sinx+x,h'(x(=-cosx+1≥0,故h(x(在[0,+∞(上單調(diào)遞增,h(x(≥h(0(=0,故g(x(在[0,+∞(上單調(diào)遞增,g(x(≥g(0(=0,即證得cosx-1+≥0,即cosx≥1-.由(2)可得當(dāng)x≥0時(shí),cosx≥1-,且由h(x(≥0得sinx≤x,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),故當(dāng)x>0時(shí),cosx>1-,sinx<x, 1=cos>cos=cos1>1-1(n+(n+(n+k(?n+k2(n+k)2,而1=2<2=2(2n+2k)2-1(2n+2k-1((2n+2k+1(nn=|003?0|,求使BF>35的n的最小值.|00sinθsinθcosθ?sinθcosθ=-2n+2k-12n+2k+1,即有>1--故>n--+-+?+-=n-+而n-+-(n-=->0,即證得>n-.?a13?a1n(23?a2n33?a3n,其??捎上蛄磕M卣篂锳=aij為矩陣中第i行第j列的數(shù),其矩陣模AF=a=22+42+32+52=36.弗羅貝尼烏斯范數(shù)在機(jī)器學(xué)習(xí)等前沿領(lǐng)域有重要的應(yīng)用.(100?0(|020?(000?n((000?n(*,n≥3矩陣Cnn=|0-sinθ-sinθcosθ-sinθcosθ?-(0000?0(-1)n-1sinn-1θ(|?(-1)n-sinn-2θ(0000?0(-1)n-1sinn-1θ(*,n≥3,DF>.|ln?0nln?0nlnnnlnnln?0=b=k=1+2+3+?+(n-1(+n=.F>35,則>45,即n2+n-90>0.F>35的n的最小值是10.(2)由題得第1對(duì)角線(xiàn)上的平方和為1+sin2θ+sin4θ+?+sin2n-2θ=,(1+sin2θ+?+sin2n-4θ(=cos2θ?=1-sin2n-2θ,?(1+sin2θ+?+sin2n-2kθ(=cos2θ?1sin-s22θ=1-sin2n-2k+2θ,?所以‖C‖=+(1-sin2n-2θ(+?+(1-sin2n-2k+2θ(+?+(1-sin4θ(+2θ=1+sin2θ+sin4θ+?+sin2n-2θ+(n-2)-sin2n-2θ-?-sin2n-2k+2θ-?-sin4θ+cos2θ=1+(n-2)+sin2θ+cos2θ=1+(n-2)+1=n.F=n.F>等價(jià)于證明ln2+ln2+?+ln2>,注意到左側(cè)求和式ln2=ln2+ln2+?+ln2,將右側(cè)含有n的表達(dá)式表示為求和式有-=-+-+?+-+-=1-1=n3n+33n+9故只需證ln2>>=-,?n≥1,n∈N*成立,(x)=-= n+1>0在所以f(x)>f(1)=ln1+1-1=0,所以原不等式成立. 到一列數(shù)記為數(shù)列{bn{,數(shù)列{cn{滿(mǎn)足80cn=bn+47,求數(shù)列{tancn?tancn+1{的前n項(xiàng)和Tn.=6,=6,nn-1個(gè),n-3n-1=2?3n-1.于是φ(pq)=pq-1-(p-1)-(q-1)=pq-p-q+1=(p-1n=bn+47=160n,即cn=2n,tancn?tancn+1=tan2n?tan(2n+2)=-1,Tn=tanc1?tanc2+tanc2?tanc3+?+tancn?tancn+1=tan2?tan4+tan4?tan6+?+tan2n?tan(2n+2)=tan4-tan2+tan6-tan4+?+tan(2n+2)-tan2ntan2-n=tan(2n-tan2-n=tan2)-n-1.之和,得到方程x1+x2+x3+x4i+1-xi(i=1,2,3,4(等于同一常數(shù),根據(jù)等差數(shù)列的定義可得{xi{構(gòu)成等差數(shù)列,所以x1+x2+x3+x4+x5=5x3=2024,xi+1-xi(i=1,2,3,4(等于同一常數(shù);(2)因?yàn)?(x1+x2+x3+x4+x5(==404.8,依題意t=1時(shí),即當(dāng)1≤i,j≤5時(shí),max(xi-xj)=1,(3)因?yàn)槠骄鶖?shù)=(x1+x2+x3+x4+x5(==404.8,又方差σ2=(xi-(2,即5σ2=(xi-(2=x-52, 現(xiàn)的概率,其中pij=P(ξ=ai,η=bj)=P[(ξ=ai)∩(η=bj)].②依題意,0≤m+n≤3,P(ξ=m,η=n)=P(ξ=m|η=n)?P(η=n),顯然P(η=n)=Cn3-n,則P(ξ=m|η=n)=Cnm3-n-m=Cn3-n,所以P(ξ=m,η=n)=Cn3-n?Cn3-n=CCn=.i2j)]∪?}=P[(ξ=ai)∩(η=b1)]+P[(ξ=ai)∩(η=b2)]+?+P[(ξ=ai)∩(η=bj)]+?=P[(ξ=ai)∩(η=bj)]=P(ξ=ai,η=bj)=pij.即(x-m)2+y2=x-n(2,2=1,當(dāng)m<n時(shí),曲線(xiàn)C是焦點(diǎn)在x軸上的橢圓;當(dāng)m>n時(shí),曲線(xiàn)C是焦點(diǎn)在x軸上的雙曲線(xiàn).,Nx2,Mx32>0且x3=-x2,y3=-y2,Ny2-y2y3 ==x2+22-x2-22x3-22,=x2+222+y=-x2-222+-y22=AM,(法一)設(shè)直線(xiàn)MM的方程為x=ty+22,聯(lián)立C的方程,得t2+2y2+42ty-8=0,則y1+y3=-42t8t2+2,y1則y1+y3=-42t8由(1)可知AM=x1-=4-x1,BN=AM=4-x3,所以+====4-y1+y3=4-?-=1,4-2ty1+y3+t2y1y34-2t?-+2?-(法二)設(shè)∠MAx=θ,則有=,解得同理由=,解得AM=,所以+=+=+=1,由橢圓定義BQ+QM+MA=8,得QM=8-BQ-AM,AMQM8-BQ-AMBNBQBQ |AM|+|BN||AM |AM|+|BN|+=+=8-=8-2=6.得[(m2-n2(s2-n2[y2+2sm(m2-n2(y+(m2-n2(2=0,1+y3=-,y1y3=,(*)因?yàn)閨AM|=x1-=x1-n,|BN|=|AM/|=x3-n,所以+=+==x1-n(+x3-n(=y1++y3+x1-x3-n(y1+y3+=,(m-+|AM|cosθnn-mcosθ(法二)設(shè)∠MAx=θ,依條件有=(m-+|AM|cosθnn-mcosθ |AM/|=mnn m2-n2n+mcosθ,所以+=+=+=.所以AQ+BQ=+=2n+=2n+=2n+=,由內(nèi)切圓性質(zhì)可知,S=AB+AQ+BQ?r,當(dāng)S=λr時(shí),λ=AB+AQ+BQ=m+=(常數(shù)).1×41 ×3 21×33×=4則PD=PAB1×41 ×3 21×33×=4又PCD=PBC+PAC=××+ 所以P(C|D(===,則P(X=0(=P((=××=,P(X=2(=P(D(=,P(X=3(=P(ABC(=××=,所以X的分布列為X0123P 4 4即X的數(shù)學(xué)期望為. 3則Pn=Pn-1+(1-Pn-1(=-Pn-1+(n=2,3,???,31(,所以Pn-=-Pn-1-,又因?yàn)镻1-=≠0,n-1(n=2,n-1>,n-1>(n=1,2,當(dāng)n為偶數(shù)時(shí)-n-1>顯然不成立,當(dāng)n為奇數(shù)時(shí),不等式可變?yōu)閚-1>,當(dāng)n=3時(shí),2=>=>成立;當(dāng)n=5時(shí),4<4=<,則n=5時(shí),n-1>不成立.又因?yàn)楹瘮?shù)y=n-1單調(diào)遞減,所以當(dāng)n≥5時(shí),n-1>不成立,*(ⅱ)記f(x(的源數(shù)列為{cn{,證明:{cn{前n項(xiàng)和Sn<.解析:(1)由f(x(=x-lnx,x∈(0,1[,得f,(x(=-=<0,當(dāng)x>0且x無(wú)限趨近于0時(shí),f(x(趨向于正無(wú)窮大,f(cn(=n,即f(x(存在源數(shù)列;(2)(i)f(x(-≤0恒成立,即λ≥x-xlnx恒成立,≥t2-2tlnt恒成立,令φ(t(=t2-2tlnt,則φ,(t)=2t-2lnt-2,(ii)由(i)得fx≤,故fcn≤,即n≤,n2n2-2n-12n+1,故cn≤n2n2-2n-12n+1,當(dāng)n=1時(shí),S1≤=1<,當(dāng)n≥2時(shí),Sn≤1+-+-+?+-=-<,即{cn{前n項(xiàng)和Sn< 5.32..9=x+2023-2+y2=x+2023-2+y2x-所以C的方程為y2=2x. 2所以C的方程為y2=2x.,Nx2因?yàn)槠叫兴倪呅蜯ANB對(duì)角線(xiàn)的交點(diǎn)在第一三象限的角平分線(xiàn)上,所以線(xiàn)段MN的中點(diǎn)Q在直線(xiàn)y=x上,所以(y1-y2((y1+y2(=2(x1-x2(,又y1+y2=2m,--=k,設(shè)直線(xiàn)MN的方程為y-m=(x-m(,即x-my+m2-m=0,2+m2-m=0,整理得y2-2my+2m2-2m=0,所以Δ=8m-4m2>0,解得0<m<2,y1+y2=2m,y1y2=2m2-2m,則|MN|=1+m2|y1-y2|=1+m2(y1+y2(2-4y1y2=1+m24m2-4(2m2-2m(=21+m2入2m-m2.又點(diǎn)A到直線(xiàn)MN的距離為d=,+m22m-m2?=22m-m2|2-2m+m2|,記t=2m-m2,所以S=2t(2-t2(=-2t3+4t,t∈(0,1[.令f(t(=-2t3+4t,t∈(0,1[,則f,(t(=-6t2+4, 令f,(t(=0,可得t=,t(<0,f(t(在區(qū)間 所以當(dāng)t=,即m=1±時(shí),f(t(取得最大值,即Smax=f=,所以S≤.2+y2=2上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的(0<λ<2(倍(橫坐標(biāo)不變), 2 2x=x1x1=xy=x=x1x1=xy=2y1(y1=2λy代入方程x2+y2=2,可得x2+y2=2,整理得+=1(0<λ<2),所以曲線(xiàn)E的軌跡方程為+=1(0<λ<2).4y=k(x-1))x2-4k2x+2k2-2λ=0,則Δ=(-4k2)2-4(λ+2k2)(2k2-2λ)>0,且x1+x3=λk2,x1x3=,可得(x1+x3(-x1x3=2=2,所以x3=--,可得y3= y1可得y3==2xy1-,-3同理可得D,所以kCD====4kAB,所以==.則tan(β-α)===7k≤37, k 7 7y=k(x+2))x2+8k2x+8k2-2λ=0,2y-t x24-t2y-t x24-t 2 2的直線(xiàn)l1與橢圓Γ交于A,B兩點(diǎn).的.對(duì)于橢圓Γ:+=1,極點(diǎn)P(x0,y0((不是原點(diǎn))對(duì)應(yīng)的極線(xiàn)為lP:+=1,且若極點(diǎn)P在x軸時(shí)).已知點(diǎn)Q是直線(xiàn)l1上的一點(diǎn),且點(diǎn)Q的橫坐標(biāo)為2.連接PQ交y軸于點(diǎn)E.連接PA,PB分別交橢圓Γ于M,N兩點(diǎn).t<4,即t的范圍為(0,4(,設(shè)P(p,0(,Q,t則Q在P的極線(xiàn)上,現(xiàn)在如果經(jīng)過(guò)P的直線(xiàn)x=my+p交橢圓于A(x1,y1),B(x2,y2):所以Δ=4b4m2p2-4b2(p2-a2((a2+b2m2(=4b4m2p2-4b2(p2a2+p2b2m2-a4-a2b2m2(2(a2+b2m2-p2(>0?a2+b2m2>p2,由韋達(dá)定理有y1+y2=-,y1y2=,此時(shí)要證明的是:kQA+kQB=2kPQ,y1-ty1-tmy1+p- -2t -2ty2-t=p-pmy2+p-p-p,y1-ty1-tmy1+p-y2-ty2-tmy2+p-p-+2tp-p=0,p-(y1-t(my2+p-+(y2-t((my1+p-+2t(my1+p-my2+p-=0,也就是2mp-+2m2ty1y2+(p-2+tmp-(y1+y2(=0,也就是2mp-+2m2t?+p-2+tmp--=0,也就是mp-+m2t?b2(p2-a2(+p-2+tmp-(-b2mp(=0,p-+mt?b2(p2-a2(-b2p(p-2+tmp-=0,p-+mt?(p2-a2(-p(p-2+tmp-=0,p-+mt?p--p-2+tmp-=0,p-+mt?p-=p-2+tmp-,接下來(lái)我們回到原題,①首先由于Q在P的極線(xiàn)x=2上,故由引理有kQN+kQB=2kPQ,kQA+kQM=2kPQ,而kQA=kQB=,所以kQN=kQM,這表明Q是MN和AB的交點(diǎn),又由于kQA+kQM=2kPQ,故kBA+kNM=2kPQ,AB=kQD=,kMN=kQT=,kPQ=kQE=,所以yD+yT=2yE,也就是E是DT的中點(diǎn);②設(shè)Q(2,t(,那么kPQ=-,kAB=,所以kMN=-t-,這表明MN的方程是y=(-t-x-2+t,即t3-x+1-x-y=0,(2)已知fx為函數(shù)fx的導(dǎo)函數(shù),fx在R上有極小值0,對(duì)于某點(diǎn)Px0,fx0,fx在P點(diǎn)的切線(xiàn)方程為y=gx,若對(duì)于?x∈R,都有x-x0?[fx-gx[≥0,則稱(chēng)P為好點(diǎn).②求所有的好點(diǎn).且f0=1,當(dāng)x→-∞時(shí),fx→-∞,因此fx在區(qū)間-∞,0[上存在唯一零點(diǎn),當(dāng)x>0時(shí),只要ex-ax2=0存在兩個(gè)根即可,即a=存在兩個(gè)根,設(shè)ux=,則ux=,(2)①fx=ex-ax2a>0,fx=ex-2ax,令φx=fx,則φx=ex-2a,當(dāng)x∈-∞,ln2a時(shí),φx<0,fx單調(diào)遞減,當(dāng)x∈ln2a,+∞時(shí),φx>0,fx單調(diào)遞增,故fln2a=eln2a-2aln2a=2a1-ln2a=0,得a=,②設(shè)Px0,fx0為好點(diǎn),對(duì)于任意x∈R,都有x-x0?[fx-gx[≥0,當(dāng)x=x0時(shí),fx-gx≥0,當(dāng)x<x0時(shí),fx-gx≤0成立,因?yàn)閒x在P點(diǎn)的切線(xiàn)方程為gx-fx0=fx0x-x0,所以gx=fx0x-x0+fx0,設(shè)hx=fx-gx,即hx=fx-fx0x-x0-fx0,hx=fx-fx0,時(shí),因?yàn)镻為好點(diǎn),所以hx=fx-gx≥0恒成立,0≥1,fx在x∈x0,+∞上單調(diào)遞增,fx>fx0,hx=fx-fx0>0,所以hx在x>x0時(shí)單調(diào)遞增,hx>hx0=fx0-gx0=0,滿(mǎn)足條件,故x0≥1時(shí)成立;0<11,+∞上單調(diào)遞增,,1時(shí),fx<fx0,hx=fx-fx0<0,所以hx在x∈x0,1時(shí)單調(diào)遞減,hx<hx0=fx0-gx0=0,矛盾,不滿(mǎn)足條件;時(shí),因?yàn)镻為好點(diǎn),所以hx=fx-gx≤0恒成立,0≤1,fx在x∈-∞,x0上單調(diào)遞減,fx>fx0,hx=fx-fx0>0,所以hx在x<x0時(shí)單調(diào)遞增,hx<hx0=fx0-gx0=0,滿(mǎn)足條件,故x0≤1時(shí)成立;0>10上單調(diào)遞增,0時(shí),fx<fx0,hx=fx-fx0<0,所以hx在x∈1,x0時(shí)單調(diào)遞減,hx>hx0=fx0-gx0=0,矛盾,不滿(mǎn)足條件;由全概率公式可得,PM1=PM1A?PA+PM1BPB+PM1CPC,(2)連續(xù)兩次都是正面的概率PM1M2=PM1M2APA+PM1M2BPB+PM1M2CPC,所以PAM1M2====;PM3M1M2===PM1M2M3PM1M2M3APA+PM1M2M3BPB+PM1M2M3CPM3M1M2===PM1M2PM1M2 = = PS=,1-PS=,P1=PM1M2APA[PN3HAPHA+PN3HBPHB+PN3HCPHC[P2=PM1M2BPB[PN3KAPKA+PN3KBPKB+PN3KCPKC[所以PM1M2N3=P1+P2=+=,PN3M1M2===,PT=,1-PT=,P:x+2y-6=0.2+b2=13.P所以橢圓E的標(biāo)準(zhǔn)方程為+y2=1,y可得(12k2+1(x2+12kx-9=0,由根與系數(shù)的關(guān)系可得:x1+x2=-,x1x2=-:y=x-1,所以=====kx1x21+x1=--×(-+1=-+1=1-+1-+13.所以直線(xiàn)AP1,BP2的交點(diǎn)P在直線(xiàn)y=2上.:y=x+1.y1,解得x3=,x4= 因?yàn)閨x1-x2|=(x1+x2(2-4x1x2=(-2+=, -4x2 -4x22-1k+1)x2-1[2+9=252+16拋物線(xiàn)E:x2=2py(p>0(的焦點(diǎn).則圓C的方程為(x-2(2+(y-1(2=4,所以?huà)佄锞€(xiàn)E的方程為x2=4y.其中Δ=16k2-4(16k-4(>0,解得k<2-3或k>2+3,則x1+x2=4k,x1x2=16k-4,又y=x2,所以y'=x,則k1=y'|x=x=x1、k2=y'|x=x=x2,所以過(guò)A點(diǎn)的切線(xiàn)方程為y-=x1(x-x1(,即y=x-,同理可得過(guò)B點(diǎn)的切線(xiàn)方程為y=x-,所以點(diǎn)Q在直線(xiàn)y=2x-1上,而點(diǎn)M(2,3(也在直線(xiàn)y=2x-1上,所以直線(xiàn)QM與圓C的另一個(gè)交點(diǎn)D就是直線(xiàn)y=2x-1與圓C的交點(diǎn),,所以直線(xiàn)QM與圓C的另一個(gè)交點(diǎn)為定點(diǎn)D,-.1(2(;么稱(chēng)d(A,B)=|x1-x2|+|y1-y2|為A,B兩點(diǎn)間的曼哈頓距離.,求d(M,N1(和d(M,N2(的最小值;(2)已知點(diǎn)N是直線(xiàn)x+k2y+2k+1=0(k>0(上的動(dòng)點(diǎn),點(diǎn)M(0,2(與點(diǎn)N的曼哈頓距離d(M,N(的最小值記為f(k(,求f(k(的最大值;≤1時(shí),d(M,N(的最大值為f(m,n(,求f(m,n(的最小值.-+2,x<02-3x,x<0y-2|=|x|+|2x-2|=〈2-x,0≤x<1,3x-2,x≥12≥1點(diǎn)(x,y(為直線(xiàn)x+k2y+2k+1=0(k>0(上一動(dòng)點(diǎn),則當(dāng)k2≥1時(shí)d(M,N(=|x|++++2|≥++++2|≥++2|,即f(k(=++2|;2<1時(shí),d(M,N(=|x|++++2≥|x|+|x+2k+1+2k2|≥|2k2+2k+1|,即f(k(=|2k2+2k+1|;所以f(k(=≤5,所以f(k(的最大值為5.k=xlnx,0<x≤e,d(M,N(=|

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論