重慶市長壽區(qū)川維片區(qū)市級(jí)名校2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
重慶市長壽區(qū)川維片區(qū)市級(jí)名校2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
重慶市長壽區(qū)川維片區(qū)市級(jí)名校2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
重慶市長壽區(qū)川維片區(qū)市級(jí)名校2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
重慶市長壽區(qū)川維片區(qū)市級(jí)名校2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重慶市長壽區(qū)川維片區(qū)市級(jí)名校2023-2024學(xué)年中考押題數(shù)學(xué)預(yù)測卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.方程5x+2y=-9與下列方程構(gòu)成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-82.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經(jīng)測量AB=2m,則樹高為()米A. B. C.+1 D.33.如果,那么的值為()A.1 B.2 C. D.4.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米5.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+6.長城、故宮等是我國第一批成功入選世界遺產(chǎn)的文化古跡,長城總長約6700000米,將6700000用科學(xué)記數(shù)法表示應(yīng)為()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1077.如圖,點(diǎn)D在△ABC邊延長線上,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線EF∥BC,交∠BCA的平分線于點(diǎn)F,交∠BCA的外角平分線于E,當(dāng)點(diǎn)O在線段AC上移動(dòng)(不與點(diǎn)A,C重合)時(shí),下列結(jié)論不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四邊形AFCE是矩形8.下列圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是()A. B. C. D.9.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.10.下列函數(shù)中,y隨著x的增大而減小的是()A.y=3x B.y=﹣3x C. D.二、填空題(共7小題,每小題3分,滿分21分)11.的算術(shù)平方根為______.12.方程的根為_____.13.已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:,,;,,其中正確的結(jié)論序號(hào)是______14.二次函數(shù)y=ax2+bx+c(a、b、c是常數(shù),且a≠0)的圖象如圖所示,則a+b+2c__________0(填“>”“=”或“<”).15.完全相同的3個(gè)小球上面分別標(biāo)有數(shù)-2、-1、1,將其放入一個(gè)不透明的盒子中后搖勻,再從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻),兩次摸到的球上數(shù)之和是負(fù)數(shù)的概率是________.16.如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)處,當(dāng)△為直角三角形時(shí),BE的長為.17.如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn),點(diǎn)關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為,點(diǎn),分別在軸和軸上,則四邊形周長的最小值為__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知,.求證.19.(5分)如圖1,□OABC的邊OC在y軸的正半軸上,OC=3,A(2,1),反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B.(1)求點(diǎn)B的坐標(biāo)和反比例函數(shù)的關(guān)系式;(2)如圖2,將線段OA延長交y=(x>0)的圖象于點(diǎn)D,過B,D的直線分別交x軸、y軸于E,F(xiàn)兩點(diǎn),①求直線BD的解析式;②求線段ED的長度.20.(8分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點(diǎn)B到直線OM的距離.21.(10分)如圖,在正方形ABCD中,E為對(duì)角線AC上一點(diǎn),CE=CD,連接EB、ED,延長BE交AD于點(diǎn)F.求證:DF2=EF?BF.22.(10分)如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運(yùn)用:正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CG交AD于點(diǎn)H.若AG=6,GH=2,則BC=.23.(12分)如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數(shù).小明發(fā)現(xiàn)OE平分∠BOC,請(qǐng)你通過計(jì)算說明道理.24.(14分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】試題分析:將x與y的值代入各項(xiàng)檢驗(yàn)即可得到結(jié)果.解:方程5x+2y=﹣9與下列方程構(gòu)成的方程組的解為的是3x﹣4y=﹣1.故選D.點(diǎn)評(píng):此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.2、C【解析】由題意可知,AC=1,AB=2,∠CAB=90°據(jù)勾股定理則BC=m;∴AC+BC=(1+)m.答:樹高為(1+)米.故選C.3、D【解析】

先對(duì)原分式進(jìn)行化簡,再尋找化簡結(jié)果與已知之間的關(guān)系即可得出答案.【詳解】故選:D.【點(diǎn)睛】本題主要考查分式的化簡求值,掌握分式的基本性質(zhì)是解題的關(guān)鍵.4、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設(shè)BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.5、C【解析】

過點(diǎn)C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計(jì)算即可.【詳解】過點(diǎn)C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點(diǎn)睛】本題考查了勾股定理,解題的關(guān)鍵是熟練的掌握勾股定理的運(yùn)算.6、A【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:6700000=6.7×106,故選:A【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.7、D【解析】

依據(jù)三角形外角性質(zhì),角平分線的定義,以及平行線的性質(zhì),即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,進(jìn)而得到結(jié)論.【詳解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A選項(xiàng)正確;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B選項(xiàng)正確;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=×180°=90°,故C選項(xiàng)正確;∵O不一定是AC的中點(diǎn),∴四邊形AECF不一定是平行四邊形,∴四邊形AFCE不一定是矩形,故D選項(xiàng)錯(cuò)誤,故選D.【點(diǎn)睛】本題考查三角形外角性質(zhì),角平分線的定義,以及平行線的性質(zhì).8、A【解析】A.是軸對(duì)稱圖形不是中心對(duì)稱圖形,正確;B.是軸對(duì)稱圖形也是中心對(duì)稱圖形,錯(cuò)誤;C.是中心對(duì)稱圖形不是軸對(duì)稱圖形,錯(cuò)誤;D.是軸對(duì)稱圖形也是中心對(duì)稱圖形,錯(cuò)誤,故選A.【點(diǎn)睛】本題考查軸對(duì)稱圖形與中心對(duì)稱圖形,正確地識(shí)別是解題的關(guān)鍵.9、A【解析】

根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對(duì)邊除以斜邊,即可得出答案.【詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練的掌握銳角三角函數(shù)的定義.10、B【解析】試題分析:A、y=3x,y隨著x的增大而增大,故此選項(xiàng)錯(cuò)誤;B、y=﹣3x,y隨著x的增大而減小,正確;C、,每個(gè)象限內(nèi),y隨著x的增大而減小,故此選項(xiàng)錯(cuò)誤;D、,每個(gè)象限內(nèi),y隨著x的增大而增大,故此選項(xiàng)錯(cuò)誤;故選B.考點(diǎn):反比例函數(shù)的性質(zhì);正比例函數(shù)的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

首先根據(jù)算術(shù)平方根的定義計(jì)算先=2,再求2的算術(shù)平方根即可.【詳解】∵=2,∴的算術(shù)平方根為.【點(diǎn)睛】本題考查了算術(shù)平方根,屬于簡單題,熟悉算數(shù)平方根的概念是解題關(guān)鍵.12、﹣2或﹣7【解析】

把無理方程轉(zhuǎn)化為整式方程即可解決問題.【詳解】兩邊平方得到:13+2=25,∴=6,∴(x+11)(2-x)=36,解得x=-2或-7,經(jīng)檢驗(yàn)x=-2或-7都是原方程的解.故答案為-2或-7【點(diǎn)睛】本題考查無理方程,解題的關(guān)鍵是學(xué)會(huì)把無理方程轉(zhuǎn)化為整式方程.13、【解析】

由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】由圖象可知:拋物線開口方向向下,則,對(duì)稱軸直線位于y軸右側(cè),則a、b異號(hào),即,拋物線與y軸交于正半軸,則,,故正確;對(duì)稱軸為,,故正確;由拋物線的對(duì)稱性知,拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為,所以當(dāng)時(shí),,即,故正確;拋物線與x軸有兩個(gè)不同的交點(diǎn),則,所以,故錯(cuò)誤;當(dāng)時(shí),,故正確.故答案為.【點(diǎn)睛】本題考查了考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸和拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.14、<【解析】

由拋物線開口向下,則a<0,拋物線與y軸交于y軸負(fù)半軸,則c<0,對(duì)稱軸在y軸左側(cè),則b<0,因此可判斷a+b+2c與0的大小【詳解】∵拋物線開口向下∴a<0∵拋物線與y軸交于y軸負(fù)半軸,∴c<0∵對(duì)稱軸在y軸左側(cè)∴﹣<0∴b<0∴a+b+2c<0故答案為<.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,正確利用圖象得出正確信息是解題關(guān)鍵.15、【解析】

畫樹狀圖列出所有等可能結(jié)果,從中找到能兩次摸到的球上數(shù)之和是負(fù)數(shù)的結(jié)果,根據(jù)概率公式計(jì)算可得.【詳解】解:畫樹狀圖如下:由樹狀圖可知共有9種等可能結(jié)果,其中兩次摸到的球上數(shù)之和是負(fù)數(shù)的有6種結(jié)果,所以兩次摸到的球上數(shù)之和是負(fù)數(shù)的概率為,故答案為:.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.16、1或.【解析】

當(dāng)△CEB′為直角三角形時(shí),有兩種情況:

①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.

連結(jié)AC,先利用勾股定理計(jì)算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=1,可計(jì)算出CB′=2,設(shè)BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x.

②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.此時(shí)ABEB′為正方形.【詳解】當(dāng)△CEB′為直角三角形時(shí),有兩種情況:

①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.

連結(jié)AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,

∴∠AB′E=∠B=90°,

當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,

∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

設(shè)BE=x,則EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.

此時(shí)ABEB′為正方形,∴BE=AB=1.

綜上所述,BE的長為或1.

故答案為:或1.17、【解析】

根據(jù)拋物線解析式求得點(diǎn)D(1,4)、點(diǎn)E(2,3),作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D′(﹣1,4)、作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點(diǎn)D′、F、G、E′四點(diǎn)共線時(shí),周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時(shí),y=3,即點(diǎn)C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對(duì)稱軸為x=1,頂點(diǎn)D(1,4),則點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)E的坐標(biāo)為(2,3),作點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)D′(﹣1,4),作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點(diǎn)G、與y軸的交點(diǎn)F即為使四邊形EDFG的周長最小的點(diǎn),四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點(diǎn)睛】本題主要考查拋物線的性質(zhì)以及兩點(diǎn)間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.三、解答題(共7小題,滿分69分)18、見解析【解析】

根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結(jié)論.【詳解】證明:∵∠ABD=∠DCA,∠DBC=∠ACB

∴∠ABD+∠DBC=∠DCA+∠ACB

即∠ABC=∠DCB

在△ABC和△DCB中

∴△ABC≌△DCB(ASA)

∴AB=DC【點(diǎn)睛】本題主要考查學(xué)生對(duì)全等三角形的判定與性質(zhì)的理解和掌握,證明此題的關(guān)鍵是求證△ABC≌△DCB.難度不大,屬于基礎(chǔ)題.19、(1)B(2,4),反比例函數(shù)的關(guān)系式為y=;(2)①直線BD的解析式為y=-x+6;②ED=2【解析】試題分析:(1)過點(diǎn)A作AP⊥x軸于點(diǎn)P,由平行四邊形的性質(zhì)可得BP=4,可得B(2,4),把點(diǎn)B坐標(biāo)代入反比例函數(shù)解析式中即可;(2)①先求出直線OA的解析式,和反比例函數(shù)解析式聯(lián)立,解方程組得到點(diǎn)D的坐標(biāo),再由待定系數(shù)法求得直線BD的解析式;②先求得點(diǎn)E的坐標(biāo),過點(diǎn)D分別作x軸的垂線,垂足為G(4,0),由溝谷定理即可求得ED長度.試題解析:(1)過點(diǎn)A作AP⊥x軸于點(diǎn)P,則AP=1,OP=2,又∵AB=OC=3,∴B(2,4).,∵反比例函數(shù)y=(x>0)的圖象經(jīng)過的B,∴4=,∴k=8.∴反比例函數(shù)的關(guān)系式為y=;(2)①由點(diǎn)A(2,1)可得直線OA的解析式為y=x.解方程組,得,.∵點(diǎn)D在第一象限,∴D(4,2).由B(2,4),點(diǎn)D(4,2)可得直線BD的解析式為y=-x+6;②把y=0代入y=-x+6,解得x=6,∴E(6,0),過點(diǎn)D分別作x軸的垂線,垂足分別為G,則G(4,0),由勾股定理可得:ED=.點(diǎn)睛:本題考查一次函數(shù)、反比例函數(shù)、平行四邊形等幾何知識(shí),綜合性較強(qiáng),要求學(xué)生有較強(qiáng)的分析問題和解決問題的能力.20、(1)(2).【解析】

(1)根據(jù)一次函數(shù)解析式求出M點(diǎn)的坐標(biāo),再把M點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式即可;(2)設(shè)點(diǎn)B到直線OM的距離為h,過M點(diǎn)作MC⊥y軸,垂足為C,根據(jù)一次函數(shù)解析式表示出B點(diǎn)坐標(biāo),利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長,再次利用三角形的面積公式可得OM?h,根據(jù)前面算的三角形面積可算出h的值.【詳解】解:(1)∵一次函數(shù)y1=﹣x﹣1過M(﹣2,m),∴m=1.∴M(﹣2,1).把M(﹣2,1)代入得:k=﹣2.∴反比列函數(shù)為.(2)設(shè)點(diǎn)B到直線OM的距離為h,過M點(diǎn)作MC⊥y軸,垂足為C.∵一次函數(shù)y1=﹣x﹣1與y軸交于點(diǎn)B,∴點(diǎn)B的坐標(biāo)是(0,﹣1).∴.在Rt△OMC中,,∵,∴.∴點(diǎn)B到直線OM的距離為.21、見解析【解析】

證明△FDE∽△FBD即可解決問題.【詳解】解:∵四邊形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共邊,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四邊形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF?BF.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),和正方形的性質(zhì),正確理解正方形的性質(zhì)是關(guān)鍵.22、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【解析】

(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點(diǎn)B、E、F三點(diǎn)共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點(diǎn)睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.23、(1)答案見解析(2)155°(3)答案見解析【解析】

(1)根據(jù)角的定義即可解決;(2)根據(jù)∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補(bǔ)角的定義求得∠DOC和∠BOC即可;(3)根據(jù)∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分別求得∠COE與∠BOE的度數(shù)即可說明.【詳解】(1)圖中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因?yàn)椤螦OC=5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論