




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省廈門市湖里區(qū)湖里中學(xué)2024年中考一模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時(shí)后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時(shí) B.7海里/時(shí) C.7海里/時(shí) D.28海里/時(shí)2.如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點(diǎn)B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個(gè)單位長(zhǎng)度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對(duì)稱的△A2B2C2,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B2的坐標(biāo)是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)3.下列計(jì)算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣64.實(shí)數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c5.在娛樂(lè)節(jié)目“墻來(lái)了!”中,參賽選手背靠水池,迎面沖來(lái)一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢(shì),才能穿墻而過(guò),否則會(huì)被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個(gè)不同形狀的“姿勢(shì)”分別穿過(guò)這兩個(gè)空洞,則該幾何體為()A. B. C. D.6.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π7.如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形8.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°9.如圖,不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.10.已知拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)11.在-,,0,-2這四個(gè)數(shù)中,最小的數(shù)是()A. B. C.0 D.-212.若||=-,則一定是()A.非正數(shù) B.正數(shù) C.非負(fù)數(shù) D.負(fù)數(shù)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_(kāi)______.14.如圖,在平面直角坐標(biāo)系中,Rt△ABO的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點(diǎn)D,且OD=2AD,過(guò)點(diǎn)D作x軸的垂線交x軸于點(diǎn)C.若S四邊形ABCD=10,則k的值為.15.如圖,P為正方形ABCD內(nèi)一點(diǎn),PA:PB:PC=1:2:3,則∠APB=_____________.16.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC以2cm/s的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向點(diǎn)A移動(dòng),若點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t=__________時(shí),△CPQ與△CBA相似.17.科技改變生活,手機(jī)導(dǎo)航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達(dá)A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達(dá)古鎮(zhèn)C.小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.18.在一個(gè)暗箱里放有a個(gè)除顏色外其他完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球試驗(yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.25,那么可以推算出a大約是_________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對(duì)應(yīng)值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列結(jié)論:①ac<1;②當(dāng)x>1時(shí),y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個(gè)根;④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.20.(6分)某初中學(xué)校舉行毛筆書法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問(wèn)題:請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;獲得一等獎(jiǎng)的同學(xué)中有來(lái)自七年級(jí),有來(lái)自八年級(jí),其他同學(xué)均來(lái)自九年級(jí),現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選兩人參加市內(nèi)毛筆書法大賽,請(qǐng)通過(guò)列表或畫樹(shù)狀圖求所選出的兩人中既有七年級(jí)又有九年級(jí)同學(xué)的概率.21.(6分)如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長(zhǎng);②當(dāng)為何值時(shí),AB?AC的值最大?22.(8分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點(diǎn)E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.圖1圖2圖3(1)思路梳理將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線.易證△AFG,故EF,BE,DF之間的數(shù)量關(guān)系為;(2)類比引申如圖2,在圖1的條件下,若點(diǎn)E,F(xiàn)由原來(lái)的位置分別變到四邊形ABCD的邊CB,DC的延長(zhǎng)線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長(zhǎng)為.23.(8分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達(dá)式;(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).24.(10分)閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來(lái)解答下面的問(wèn)題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點(diǎn)E為△ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).25.(10分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn).已知點(diǎn)C的坐標(biāo)是(6,-1),D(n,3).求m的值和點(diǎn)D的坐標(biāo).求的值.根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?26.(12分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過(guò)AC的中點(diǎn)D,E為⊙O上的一點(diǎn),連接DE,BE,DE與AB交于點(diǎn)F.求證:BC為⊙O的切線;若F為OA的中點(diǎn),⊙O的半徑為2,求BE的長(zhǎng).27.(12分)解分式方程:.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】試題解析:設(shè)貨船的航行速度為海里/時(shí),小時(shí)后貨船在點(diǎn)處,作于點(diǎn).由題意海里,海里,在中,所以在中,所以所以解得:故選A.2、D【解析】
首先利用平移的性質(zhì)得到△A1B1C1中點(diǎn)B的對(duì)應(yīng)點(diǎn)B1坐標(biāo),進(jìn)而利用關(guān)于x軸對(duì)稱點(diǎn)的性質(zhì)得到△A2B2C2中B2的坐標(biāo),即可得出答案.【詳解】解:把△ABC向右平移4個(gè)單位長(zhǎng)度得到△A1B1C1,此時(shí)點(diǎn)B(-5,2)的對(duì)應(yīng)點(diǎn)B1坐標(biāo)為(-1,2),則與△A1B1C1關(guān)于于x軸對(duì)稱的△A2B2C2中B2的坐標(biāo)為(-1,-2),故選D.【點(diǎn)睛】此題主要考查了平移變換以及軸對(duì)稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.3、C【解析】
分別根據(jù)二次根式的定義,乘方的意義,負(fù)指數(shù)冪的意義以及絕對(duì)值的定義解答即可.【詳解】=3,故選項(xiàng)A不合題意;﹣32=﹣9,故選項(xiàng)B不合題意;(﹣3)﹣2=,故選項(xiàng)C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項(xiàng)D不合題意.故選C.【點(diǎn)睛】本題主要考查了二次根式的定義,乘方的定義、負(fù)指數(shù)冪的意義以及絕對(duì)值的定義,熟記定義是解答本題的關(guān)鍵.4、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項(xiàng)判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項(xiàng)A不符合題意;∵c<b<0,∴b+c<0,∴選項(xiàng)B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項(xiàng)C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項(xiàng)D符合題意.故選D.點(diǎn)睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù).5、C【解析】試題分析:通過(guò)圖示可知,要想通過(guò)圓,則可以是圓柱、圓錐、球,而能通過(guò)三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C6、D【解析】
根據(jù)任意兩個(gè)實(shí)數(shù)都可以比較大?。龑?shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點(diǎn)睛】本題考查了實(shí)數(shù)大小的比較,理解任意兩個(gè)實(shí)數(shù)都可以比較大小.正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小是關(guān)鍵.7、C【解析】A選項(xiàng),∵在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項(xiàng),∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項(xiàng),因?yàn)樘砑訔l件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯(cuò)誤;D選項(xiàng),因?yàn)橛商砑拥臈l件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過(guò)證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.8、C【解析】
由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題.9、B【解析】
首先分別解出兩個(gè)不等式,再確定不等式組的解集,然后在數(shù)軸上表示即可.【詳解】解:解第一個(gè)不等式得:x>-1;解第二個(gè)不等式得:x≤1,在數(shù)軸上表示,故選B.【點(diǎn)睛】此題主要考查了解一元一次不等式組,以及在數(shù)軸上表示解集,把每個(gè)不等式的解集在數(shù)軸上表示出來(lái)(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<“>”要用空心圓點(diǎn)表示.10、C【解析】
①由拋物線的頂點(diǎn)橫坐標(biāo)可得出b=-2a,進(jìn)而可得出4a+2b=0,結(jié)論①錯(cuò)誤;
②利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點(diǎn)的位置即可得出-1≤a≤-,結(jié)論②正確;
③由拋物線的頂點(diǎn)坐標(biāo)及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進(jìn)而可得出對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④由拋物線的頂點(diǎn)坐標(biāo)可得出拋物線y=ax2+bx+c與直線y=n只有一個(gè)交點(diǎn),將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),進(jìn)而可得出關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,結(jié)論①錯(cuò)誤;
②∵拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵拋物線y=ax2+bx+c與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),
∴2≤c≤3,
∴-1≤a≤-,結(jié)論②正確;
③∵a<0,頂點(diǎn)坐標(biāo)為(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),
∴拋物線y=ax2+bx+c與直線y=n只有一個(gè)交點(diǎn),
又∵a<0,
∴拋物線開(kāi)口向下,
∴拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),
∴關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合④正確.
故選C.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點(diǎn)以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個(gè)結(jié)論的正誤是解題的關(guān)鍵.11、D【解析】
根據(jù)正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小比較即可.【詳解】在﹣,,0,﹣1這四個(gè)數(shù)中,﹣1<﹣<0<,故最小的數(shù)為:﹣1.故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的大小比較,解答本題的關(guān)鍵是熟練掌握實(shí)數(shù)的大小比較方法,特別是兩個(gè)負(fù)數(shù)的大小比較.12、A【解析】
根據(jù)絕對(duì)值的性質(zhì)進(jìn)行求解即可得.【詳解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正數(shù),故選A.【點(diǎn)睛】本題考查了絕對(duì)值的性質(zhì),熟練掌握絕對(duì)值的性質(zhì)是解題的關(guān)鍵.絕對(duì)值的性質(zhì):一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);1的絕對(duì)值是1.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】
設(shè)AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡(jiǎn)S△ABC=,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【詳解】設(shè)AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關(guān)系有,解得,故當(dāng)時(shí),取得最大值,
故答案為:.【點(diǎn)睛】本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用,考查了二次函數(shù)的性質(zhì),考查了計(jì)算能力,當(dāng)涉及最值問(wèn)題時(shí),可考慮用函數(shù)的單調(diào)性和定義域等問(wèn)題,屬于中檔題.14、﹣1【解析】
∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.15、°【解析】
通過(guò)旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個(gè)三角形,再根據(jù)兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得△P′BC,則△PAB≌△P′BC,設(shè)PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點(diǎn)睛】本題考查的是正方形四邊相等的性質(zhì),考查直角三角形中勾股定理的運(yùn)用,把△PAB順時(shí)針旋轉(zhuǎn)90°使得A′與C點(diǎn)重合是解題的關(guān)鍵.16、4.8或【解析】
根據(jù)題意可分兩種情況,①當(dāng)CP和CB是對(duì)應(yīng)邊時(shí),△CPQ∽△CBA與②CP和CA是對(duì)應(yīng)邊時(shí),△CPQ∽△CAB,根據(jù)相似三角形的性質(zhì)分別求出時(shí)間t即可.【詳解】①CP和CB是對(duì)應(yīng)邊時(shí),△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對(duì)應(yīng)邊時(shí),△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當(dāng)t=4.8或時(shí),△CPQ與△CBA相似.【點(diǎn)睛】此題主要考查相似三角形的性質(zhì),解題的關(guān)鍵是分情況討論.17、3【解析】
作BE⊥AC于E,根據(jù)正弦的定義求出BE,再根據(jù)正弦的定義計(jì)算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點(diǎn)睛】本題考查的是解直角三角形的應(yīng)用-方向角問(wèn)題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.18、12【解析】
在同樣條件下,大量反復(fù)試驗(yàn)時(shí),隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,根據(jù)紅球的個(gè)數(shù)除以總數(shù)等于頻率,求解即可.【詳解】∵摸到紅球的頻率穩(wěn)定在0.25,
∴解得:a=12故答案為:12【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率,解答此題的關(guān)鍵是利用紅球的個(gè)數(shù)除以總數(shù)等于頻率.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、①③④.【解析】試題分析:∵x=﹣1時(shí)y=﹣1,x=1時(shí),y=3,x=1時(shí),y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對(duì)稱軸為直線,所以,當(dāng)x>時(shí),y的值隨x值的增大而減小,故②錯(cuò)誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個(gè)根,正確,故③正確;﹣1<x<3時(shí),ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結(jié)論正確的是①③④.故答案為①③④.【考點(diǎn)】二次函數(shù)的性質(zhì).20、(1)答案見(jiàn)解析;(2).【解析】【分析】(1)根據(jù)參與獎(jiǎng)有10人,占比25%可求得獲獎(jiǎng)的總?cè)藬?shù),用總?cè)藬?shù)減去二等獎(jiǎng)、三等獎(jiǎng)、鼓勵(lì)獎(jiǎng)、參與獎(jiǎng)的人數(shù)可求得一等獎(jiǎng)的人數(shù),據(jù)此補(bǔ)全條形圖即可;(2)根據(jù)題意分別求出七年級(jí)、八年級(jí)、九年級(jí)獲得一等獎(jiǎng)的人數(shù),然后通過(guò)列表或畫樹(shù)狀圖法進(jìn)行求解即可得.【詳解】(1)10÷25%=40(人),獲一等獎(jiǎng)人數(shù):40-8-6-12-10=4(人),補(bǔ)全條形圖如圖所示:(2)七年級(jí)獲一等獎(jiǎng)人數(shù):4×=1(人),八年級(jí)獲一等獎(jiǎng)人數(shù):4×=1(人),∴九年級(jí)獲一等獎(jiǎng)人數(shù):4-1-1=2(人),七年級(jí)獲一等獎(jiǎng)的同學(xué)用M表示,八年級(jí)獲一等獎(jiǎng)的同學(xué)用N表示,九年級(jí)獲一等獎(jiǎng)的同學(xué)用P1、P2表示,樹(shù)狀圖如下:共有12種等可能結(jié)果,其中獲得一等獎(jiǎng)的既有七年級(jí)又有九年級(jí)人數(shù)的結(jié)果有4種,則所選出的兩人中既有七年級(jí)又有九年級(jí)同學(xué)的概率P=.【點(diǎn)評(píng)】此題考查了統(tǒng)計(jì)與概率綜合,理解扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖的意義及列表法或樹(shù)狀圖法是解題關(guān)鍵.21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點(diǎn)M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點(diǎn)M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點(diǎn)E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時(shí),AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時(shí).點(diǎn)睛:本題主要考查圓的綜合問(wèn)題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí)點(diǎn).22、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見(jiàn)解析;(3)【解析】試題分析:(1)先根據(jù)旋轉(zhuǎn)得:計(jì)算即點(diǎn)共線,再根據(jù)SAS證明△AFE≌△AFG,得EF=FG,可得結(jié)論EF=DF+DG=DF+AE;
(2)如圖2,同理作輔助線:把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;
(3)如圖3,同理作輔助線:把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長(zhǎng),從而得結(jié)論.試題解析:(1)思路梳理:如圖1,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,可使AB與AD重合,即AB=AD,由旋轉(zhuǎn)得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點(diǎn)F.D.
G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,可使AB與AD重合,則G在DC上,由旋轉(zhuǎn)得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯(lián)想拓展:如圖3,把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACG,可使AB與AC重合,連接EG,由旋轉(zhuǎn)得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴23、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到(1,1)時(shí),四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點(diǎn)A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對(duì)稱軸方程,由勾股定理求出CD的值,以點(diǎn)C為圓心,CD為半徑作弧交對(duì)稱軸于P1;以點(diǎn)D為圓心CD為半徑作圓交對(duì)稱軸于點(diǎn)P1,P3;作CH垂直于對(duì)稱軸與點(diǎn)H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點(diǎn)的坐標(biāo),從而可求出BC的解析式,從而可設(shè)設(shè)E點(diǎn)的坐標(biāo),進(jìn)而可表示出F的坐標(biāo),由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過(guò)A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對(duì)稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當(dāng)y=0時(shí),0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過(guò)點(diǎn)C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時(shí),S四邊形CDBF的面積最大=,∴E(1,1).考點(diǎn):1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值24、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長(zhǎng)DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問(wèn)題;(3)如圖3中,將AE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長(zhǎng)ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長(zhǎng)DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年山東海陽(yáng)市益民殯儀服務(wù)有限公司公開(kāi)招聘工作人員5人筆試參考題庫(kù)附帶答案詳解
- 保育員幼兒戶外游戲護(hù)理
- 中學(xué)體育與健康課程與教學(xué)論 高職課件 第一章緒論學(xué)習(xí)資料
- 小班勞動(dòng)課程微課
- 二零二五版教職工崗位工作協(xié)議
- 全新土地出資入股協(xié)議書
- 新入伙合伙人協(xié)議書二零二五年
- 二零二五養(yǎng)豬承包的合同范例
- 房子抵押還款協(xié)議書
- 2025屆湖南省邵東縣十中高三下學(xué)期模擬檢測(cè)試題一(期末考試)數(shù)學(xué)試題
- 自然辯證法知到課后答案智慧樹(shù)章節(jié)測(cè)試答案2025年春浙江大學(xué)
- 陜09J01 建筑用料及做法圖集
- DB36T 1532-2021百香果栽培技術(shù)規(guī)程_(高清版)
- 2021新蘇教版科學(xué)四年級(jí)下冊(cè)7.太陽(yáng)教案
- 第二節(jié)歐洲西部
- 高分子化學(xué)第六章_離子聚合
- 一年級(jí)100道口算題
- 天貓?zhí)詫毜赇佭\(yùn)營(yíng)每日巡店必做的事
- 拌合站驗(yàn)收指南
- 護(hù)士資格(執(zhí)業(yè))證書遺失補(bǔ)辦申請(qǐng)表
- 壓力容器基礎(chǔ)知識(shí)
評(píng)論
0/150
提交評(píng)論