版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省深圳市福田片區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)五模試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列計(jì)算正確的是()A.a(chǎn)6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=12.如圖,任意轉(zhuǎn)動(dòng)正六邊形轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),指針指向大于3的數(shù)的概率是()A. B. C. D.3.-的立方根是()A.-8 B.-4 C.-2 D.不存在4.如圖,直線a∥b,直線分別交a,b于點(diǎn)A,C,∠BAC的平分線交直線b于點(diǎn)D,若∠1=50°,則∠2的度數(shù)是A.50° B.70° C.80° D.110°5.計(jì)算(﹣)﹣1的結(jié)果是()A.﹣ B. C.2 D.﹣26.2022年冬奧會(huì),北京、延慶、張家口三個(gè)賽區(qū)共25個(gè)場(chǎng)館,北京共12個(gè),其中11個(gè)為2008年奧運(yùn)會(huì)遺留場(chǎng)館,唯一一個(gè)新建的場(chǎng)館是國(guó)家速滑館,可容納12000人觀賽,將12000用科學(xué)記數(shù)法表示應(yīng)為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×107.在平面直角坐標(biāo)系中,將點(diǎn)P(4,﹣3)繞原點(diǎn)旋轉(zhuǎn)90°得到P1,則P1的坐標(biāo)為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)8.如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)M是CD的中點(diǎn),動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿BC運(yùn)動(dòng),到點(diǎn)C時(shí)停止運(yùn)動(dòng),速度為每秒1個(gè)長(zhǎng)度單位;動(dòng)點(diǎn)F從點(diǎn)M出發(fā),沿M→D→A遠(yuǎn)動(dòng),速度也為每秒1個(gè)長(zhǎng)度單位:動(dòng)點(diǎn)G從點(diǎn)D出發(fā),沿DA運(yùn)動(dòng),速度為每秒2個(gè)長(zhǎng)度單位,到點(diǎn)A后沿AD返回,返回時(shí)速度為每秒1個(gè)長(zhǎng)度單位,三個(gè)點(diǎn)的運(yùn)動(dòng)同時(shí)開(kāi)始,同時(shí)結(jié)束.設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為x,△EFG的面積為y,下列能表示y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.9.我國(guó)作家莫言獲得諾貝爾文學(xué)獎(jiǎng)之后,他的代表作品《蛙》的銷(xiāo)售量就比獲獎(jiǎng)之前增長(zhǎng)了180倍,達(dá)到2100000冊(cè).把2100000用科學(xué)記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×10610.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊AB邊上的高CD的長(zhǎng)為_(kāi)_______.12.如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF=__.13.(﹣12)﹣2﹣(3.14﹣π)014.如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長(zhǎng)交邊BC于點(diǎn)G.若,則(用含k的代數(shù)式表示).15.點(diǎn)A(x1,y1)、B(x1,y1)在二次函數(shù)y=x1﹣4x﹣1的圖象上,若當(dāng)1<x1<1,3<x1<4時(shí),則y1與y1的大小關(guān)系是y1_____y1.(用“>”、“<”、“=”填空)16.分解因式:4ax2-ay2=________________.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是AB延長(zhǎng)線上的點(diǎn),CD與⊙O相切于點(diǎn)D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫(xiě)出AC的長(zhǎng).18.(8分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點(diǎn)E處有一棵盛開(kāi)的桃花的小桃樹(shù),他想利用平面鏡測(cè)量的方式計(jì)算一下小桃樹(shù)到山腳下的距離,即DE的長(zhǎng)度,小華站在點(diǎn)B的位置,讓同伴移動(dòng)平面鏡至點(diǎn)C處,此時(shí)小華在平面鏡內(nèi)可以看到點(diǎn)E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請(qǐng)你利用以上的數(shù)據(jù)求出DE的長(zhǎng)度.(結(jié)果保留根號(hào))19.(8分)如圖,一次函數(shù)y=﹣x+6的圖象分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,若某一時(shí)刻,△OPA的面積為6,求此時(shí)P的坐標(biāo);(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?(只需寫(xiě)出t的值,無(wú)需解答過(guò)程)20.(8分)如圖,益陽(yáng)市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張?jiān)谛〉郎蠝y(cè)得如下數(shù)據(jù):AB=80.0米,∠PAB=38.1°,∠PBA=26.1.請(qǐng)幫助小張求出小橋PD的長(zhǎng)并確定小橋在小道上的位置.(以A,B為參照點(diǎn),結(jié)果精確到0.1米)(參考數(shù)據(jù):sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)21.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過(guò)O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱(chēng)軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點(diǎn)M在對(duì)稱(chēng)軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請(qǐng)問(wèn)是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.22.(10分)網(wǎng)癮低齡化問(wèn)題已經(jīng)引起社會(huì)各界的高度關(guān)注,有關(guān)部門(mén)在全國(guó)范圍內(nèi)對(duì)12﹣35歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報(bào)道,目前我國(guó)12﹣35歲網(wǎng)癮人數(shù)約為2000萬(wàn),請(qǐng)估計(jì)其中12﹣23歲的人數(shù)23.(12分)如圖,已知拋物線y=x2﹣4與x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線y=x+m經(jīng)過(guò)點(diǎn)A,與y軸交于點(diǎn)D.求線段AD的長(zhǎng);平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C′.若新拋物線經(jīng)過(guò)點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC′平行于直線AD,求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.24.如圖,已知,請(qǐng)用尺規(guī)過(guò)點(diǎn)作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫(xiě)作法)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】解:A.a(chǎn)6÷a2=a4,故A錯(cuò)誤;B.(﹣2)﹣1=﹣,故B錯(cuò)誤;C.(﹣3x2)?2x3=﹣6x5,故C錯(cuò);D.(π﹣3)0=1,故D正確.故選D.2、D【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個(gè)數(shù),大于3的有3個(gè),∴P(大于3)=.故選D.點(diǎn)睛:本題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.3、C【解析】分析:首先求出的值,然后根據(jù)立方根的計(jì)算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點(diǎn)睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.4、C【解析】
根據(jù)平行線的性質(zhì)可得∠BAD=∠1,再根據(jù)AD是∠BAC的平分線,進(jìn)而可得∠BAC的度數(shù),再根據(jù)補(bǔ)角定義可得答案.【詳解】因?yàn)閍∥b,所以∠1=∠BAD=50°,因?yàn)锳D是∠BAC的平分線,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本題正確答案為C.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平行線的性質(zhì),解題關(guān)鍵是掌握兩直線平行,內(nèi)錯(cuò)角相等.5、D【解析】
根據(jù)負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù),可得答案.【詳解】解:,
故選D.【點(diǎn)睛】本題考查了負(fù)整數(shù)指數(shù)冪,負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù).6、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】數(shù)據(jù)12000用科學(xué)記數(shù)法表示為1.2×104,故選:B.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.7、A【解析】
分順時(shí)針旋轉(zhuǎn),逆時(shí)針旋轉(zhuǎn)兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉(zhuǎn)可得P′(3,4),P″(?3,?4),故選A.【點(diǎn)睛】本題考查坐標(biāo)與圖形變換——旋轉(zhuǎn),解題的關(guān)鍵是利用空間想象能力.8、A【解析】
當(dāng)點(diǎn)F在MD上運(yùn)動(dòng)時(shí),0≤x<2;當(dāng)點(diǎn)F在DA上運(yùn)動(dòng)時(shí),2<x≤4.再按相關(guān)圖形面積公式列出表達(dá)式即可.【詳解】解:當(dāng)點(diǎn)F在MD上運(yùn)動(dòng)時(shí),0≤x<2,則:y=S梯形ECDG-S△EFC-S△GDF=,當(dāng)點(diǎn)F在DA上運(yùn)動(dòng)時(shí),2<x≤4,則:y=,綜上,只有A選項(xiàng)圖形符合題意,故選擇A.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖像,抓住動(dòng)點(diǎn)運(yùn)動(dòng)的特點(diǎn)是解題關(guān)鍵.9、D【解析】2100000=2.1×106.點(diǎn)睛:對(duì)于一個(gè)絕對(duì)值較大的數(shù),用科學(xué)記數(shù)法寫(xiě)成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).10、A【解析】
用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運(yùn)算法則“減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】如圖,∵在Rt△ABC中,∠C=90°,AB=4,sinA=,∴BC=,∴AC=,∵CD是AB邊上的高,∴CD=AC·sinA=.故答案為:.12、15°【解析】
根據(jù)平行四邊形的性質(zhì)和圓的半徑相等得到△AOB為等邊三角形,根據(jù)等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據(jù)圓周角定理計(jì)算即可.【詳解】解答:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圓周角定理得,故答案為15°.13、3.【解析】試題分析:分別根據(jù)零指數(shù)冪,負(fù)指數(shù)冪的運(yùn)算法則計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.原式=4-1=3.考點(diǎn):負(fù)整數(shù)指數(shù)冪;零指數(shù)冪.14、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設(shè),則?!唿c(diǎn)E是邊CD的中點(diǎn),∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!唷!嘣赗t△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担!?。15、<【解析】
先根據(jù)二次函數(shù)的解析式判斷出拋物線的開(kāi)口方向及對(duì)稱(chēng)軸,根據(jù)圖象上的點(diǎn)的橫坐標(biāo)距離對(duì)稱(chēng)軸的遠(yuǎn)近來(lái)判斷縱坐標(biāo)的大?。驹斀狻坑啥魏瘮?shù)y=x1-4x-1=(x-1)1-5可知,其圖象開(kāi)口向上,且對(duì)稱(chēng)軸為x=1,
∵1<x1<1,3<x1<4,
∴A點(diǎn)橫坐標(biāo)離對(duì)稱(chēng)軸的距離小于B點(diǎn)橫坐標(biāo)離對(duì)稱(chēng)軸的距離,
∴y1<y1.
故答案為<.16、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進(jìn)行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).【點(diǎn)睛】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.三、解答題(共8題,共72分)17、(1)詳見(jiàn)解析;(2)1+【解析】
(1)連接OD,結(jié)合切線的性質(zhì)和直徑所對(duì)的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結(jié).如圖,與相切于點(diǎn)D,是的直徑,即(2)解:在中,.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)圓的認(rèn)識(shí),熟練掌握?qǐng)A的性質(zhì)是解題的關(guān)鍵.18、DE的長(zhǎng)度為6+1.【解析】
根據(jù)相似三角形的判定與性質(zhì)解答即可.【詳解】解:過(guò)E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,設(shè)EF為x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的長(zhǎng)度為6+1.【點(diǎn)睛】本題考查相似三角形性質(zhì)的應(yīng)用,解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來(lái)解決問(wèn)題.19、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】
(1)先求出△OPA的面積為6時(shí)BP的長(zhǎng),再求出點(diǎn)P的坐標(biāo);(2)分別討論AO=AP,AP=OP和AO=OP三種情況.【詳解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,∴A(0,6),B(8,0),∴OA=6,OB=8,∴AB=10,∴AB邊上的高為6×8÷10=,∵P點(diǎn)的運(yùn)動(dòng)時(shí)間為t,∴BP=t,則AP=,當(dāng)△AOP面積為6時(shí),則有AP×=6,即×=6,解得t=7.5或12.5,過(guò)P作PE⊥x軸,PF⊥y軸,垂足分別為E、F,則PE==4.5或7.5,BE==6或10,則點(diǎn)P坐標(biāo)為(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由題意可知BP=t,AP=,當(dāng)△AOP為等腰三角形時(shí),有AP=AO、AP=OP和AO=OP三種情況.
①當(dāng)AP=AO時(shí),則有=6,解得t=4或16;②當(dāng)AP=OP時(shí),過(guò)P作PM⊥AO,垂足為M,如圖1,則M為AO中點(diǎn),故P為AB中點(diǎn),此時(shí)t=5;③當(dāng)AO=OP時(shí),過(guò)O作ON⊥AB,垂足為N,過(guò)P作PH⊥OB,垂足為H,如圖2,則AN=AP=(10-t),
∵PH∥AO,∴△AOB∽△PHB,∴=,即=,∴PH=t,又∠OAN+∠AON=∠OAN+PBH=90°,∴∠AON=∠PBH,又∠ANO=∠PHB,
∴△ANO∽△PHB,
∴=,即=,解得t=;綜上可知當(dāng)t的值為、4、5和16時(shí),△AOP為等腰三角形.20、49.2米【解析】
設(shè)PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長(zhǎng)度,繼而也可確定小橋在小道上的位置.【詳解】解:設(shè)PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小橋PD的長(zhǎng)度約為24.6米,位于AB之間距B點(diǎn)約49.2米.21、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見(jiàn)解析;(3)(,2)或(,﹣2).【解析】
(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長(zhǎng),再利用勾股定理的逆定理可進(jìn)行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點(diǎn)的坐標(biāo),當(dāng)AF為邊時(shí),則有FM∥AN且FM=AN,則可求得M點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得M點(diǎn)坐標(biāo);當(dāng)AF為對(duì)角線時(shí),由A、F的坐標(biāo)可求得平行四邊形的對(duì)稱(chēng)中心,可設(shè)出M點(diǎn)坐標(biāo),則可表示出N點(diǎn)坐標(biāo),再由N點(diǎn)在x軸上可得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)坐標(biāo).【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過(guò)O、A兩點(diǎn),∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標(biāo)代入可得,解得,∴直線BE解析式為y=x+1,當(dāng)x=2時(shí),y=2,∴F(2,2),①當(dāng)AF為平行四邊形的一邊時(shí),則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點(diǎn)M的縱坐標(biāo)為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對(duì)稱(chēng)軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對(duì)稱(chēng)軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,﹣2);②當(dāng)AF為平行四邊形的對(duì)角線時(shí),∵A(4,0),F(xiàn)(2,2),∴線段AF的中點(diǎn)為(3,1),即平行四邊形的對(duì)稱(chēng)中心為(3,1),設(shè)M(t,﹣t2+3t),N(x,0),則﹣t2+3t=2,解得t=,∵點(diǎn)M在拋物線對(duì)稱(chēng)軸右側(cè),∴x>2,∵t>2,∴t=,∴M點(diǎn)坐標(biāo)為(,2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(,2)或(,﹣2).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、勾股定理及其逆定理、平行四邊形的性質(zhì)、方程思想及分類(lèi)討論思想等知識(shí).在(1)中求得拋物線的頂點(diǎn)坐標(biāo)是解題的關(guān)鍵,注意拋物線頂點(diǎn)式的應(yīng)用,在(2)中求得△EDB各邊的長(zhǎng)度是解題的關(guān)鍵,在(3)中確定出M點(diǎn)的縱坐標(biāo)是解題的關(guān)鍵,注意分類(lèi)討論.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.22、(1)1500;(2)見(jiàn)解析;(3)108°;(3)12~23歲的人數(shù)為400萬(wàn)【解析】試題分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總?cè)藬?shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補(bǔ)全條形統(tǒng)計(jì)圖;(3)先計(jì)算18-23歲的人數(shù)占調(diào)查總?cè)藬?shù)的百分比,再計(jì)算這一組所對(duì)應(yīng)的圓心角的度數(shù);(4)先計(jì)算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬(wàn)中的12﹣23歲的人數(shù).試題解析:解:(1)結(jié)合條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總?cè)藬?shù)為330÷22%=1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年超額保險(xiǎn)合同賠付限制
- 2025版城市更新改造項(xiàng)目投標(biāo)承諾書(shū)規(guī)范范本3篇
- 2025版木雕工藝品制作木工分包合同范本4篇
- 2025版企業(yè)銷(xiāo)售業(yè)務(wù)員合作協(xié)議范本3篇
- 2025年度豬圈建造與農(nóng)業(yè)循環(huán)經(jīng)濟(jì)合同4篇
- 二零二五版電影院裝修升級(jí)合同范本3篇
- 2025版學(xué)校教師聘用合同范本:職稱(chēng)晉升條款詳解3篇
- 2025年度體育場(chǎng)館草坪鋪設(shè)與維護(hù)服務(wù)合同4篇
- 2025年度貨車(chē)司機(jī)勞動(dòng)合同(附交通事故責(zé)任及賠償)
- 2025年度智能科技股權(quán)眾籌協(xié)議書(shū)模板
- 高考語(yǔ)文復(fù)習(xí)【知識(shí)精研】《千里江山圖》高考真題說(shuō)題課件
- 河北省承德市2023-2024學(xué)年高一上學(xué)期期末物理試卷(含答案)
- 高中物理斜面模型大全(80個(gè))
- 012主要研究者(PI)職責(zé)藥物臨床試驗(yàn)機(jī)構(gòu)GCP SOP
- 農(nóng)耕研學(xué)活動(dòng)方案種小麥
- 2024年佛山市勞動(dòng)合同條例
- 污水管網(wǎng)規(guī)劃建設(shè)方案
- 城鎮(zhèn)智慧排水系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 采購(gòu)管理制度及流程采購(gòu)管理制度及流程
- 五年級(jí)美術(shù)下冊(cè)第9課《寫(xiě)意蔬果》-優(yōu)秀課件4人教版
- 節(jié)能降耗課件
評(píng)論
0/150
提交評(píng)論