山東省煙臺市龍口市達標名校2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
山東省煙臺市龍口市達標名校2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
山東省煙臺市龍口市達標名校2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
山東省煙臺市龍口市達標名校2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
山東省煙臺市龍口市達標名校2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省煙臺市龍口市達標名校2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列關(guān)于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.a(chǎn)x2+bx+c=02.有理數(shù)a,b在數(shù)軸上的對應(yīng)點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④3.如圖所示是小孔成像原理的示意圖,根據(jù)圖中所標注的尺寸,求出這支蠟燭在暗盒中所成像的長()A. B. C. D.4.如圖,是的直徑,是的弦,連接,,,則與的數(shù)量關(guān)系為()A. B.C. D.5.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④6.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.7.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=8.山西有著悠久的歷史,遠在100多萬年前就有古人類生息在這塊土地上.春秋時期,山西大部分為晉國領(lǐng)地,故山西簡稱為“晉”,戰(zhàn)國初韓、趙、魏三分晉,山西又有“三晉”之稱,下面四個以“晉”字為原型的Logo圖案中,是軸對稱圖形的共有()A. B. C. D.9.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm10.已知二次函數(shù)的與的不符對應(yīng)值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值二、填空題(本大題共6個小題,每小題3分,共18分)11.同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為.12.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.13.已知x1,x2是方程x2-3x-1=0的兩根,則=______.14.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形向右平移,當兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.15.在△ABC中,∠C=90°,AC=3,BC=4,點D,E,F分別是邊AB,AC,BC的中點,則16.如圖①,在矩形ABCD中,對角線AC與BD交于點O,動點P從點A出發(fā),沿AB勻速運動,到達點B時停止,設(shè)點P所走的路程為x,線段OP的長為y,若y與x之間的函數(shù)圖象如圖②所示,則矩形ABCD的周長為_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.18.(8分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.19.(8分)如圖,已知的直徑,是的弦,過點作的切線交的延長線于點,過點作,垂足為,與交于點,設(shè),的度數(shù)分別是,,且.(1)用含的代數(shù)式表示;(2)連結(jié)交于點,若,求的長.20.(8分)先化簡,再求值:,其中m是方程的根.21.(8分)一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側(cè)),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設(shè)點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.23.(12分)計算:(1)(2)24.拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標,若不存在,說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2進行分析即可.【詳解】A.未知數(shù)的最高次數(shù)不是2

,不是一元二次方程,故此選項錯誤;

B.

是一元二次方程,故此選項正確;

C.

未知數(shù)的最高次數(shù)是3,不是一元二次方程,故此選項錯誤;

D.

a=0時,不是一元二次方程,故此選項錯誤;

故選B.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是明白:一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2.2、B【解析】分析:本題是考察數(shù)軸上的點的大小的關(guān)系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.3、D【解析】

過O作直線OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根據(jù)相似三角形對應(yīng)邊的比等于對應(yīng)高的比列方程求出CD的值即可.【詳解】過O作直線OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分別是△OAB和△OCD的高,∴,即,解得:CD=1.故選D.【點睛】本題考查相似三角形的應(yīng)用,解題的關(guān)鍵在于理解小孔成像原理給我們帶來的已知條件,熟記相似三角形對應(yīng)邊的比等于對應(yīng)高的比是解題關(guān)鍵.4、C【解析】

首先根據(jù)圓周角定理可知∠B=∠C,再根據(jù)直徑所得的圓周角是直角可得∠ADB=90°,然后根據(jù)三角形的內(nèi)角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結(jié)果.【詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【點睛】本題考查了圓周角定理及其逆定理和三角形的內(nèi)角和定理,掌握相關(guān)知識進行轉(zhuǎn)化是解題的關(guān)鍵.5、B【解析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.6、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.7、D【解析】

A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結(jié)論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì)、二次函數(shù)的最值以及二次函數(shù)圖象上點的坐標特征,利用二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點的坐標特征逐一分析四個選項的正誤是解題的關(guān)鍵.8、D【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,故此選項錯誤;B、不是軸對稱圖形,故此選項錯誤;C、不是軸對稱圖形,故此選項錯誤;D、是軸對稱圖形,故此選項正確.

故選D.【點睛】此題主要考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、A【解析】分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.詳解:設(shè)CN=xcm,則DN=(8﹣x)cm,由折疊的性質(zhì)知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質(zhì)是軸對稱,對應(yīng)線段相等,對應(yīng)角相等,通常用勾股定理解決折疊問題.10、C【解析】

分別結(jié)合圖表中數(shù)據(jù)得出二次函數(shù)對稱軸以及圖像與x軸交點范圍和自變量x與y的對應(yīng)情況,進而得出答案.【詳解】A、利用圖表中x=0,1時對應(yīng)y的值相等,x=﹣1,2時對應(yīng)y的值相等,∴x=﹣2,5時對應(yīng)y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數(shù)圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應(yīng)y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.【點睛】此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數(shù)的性質(zhì),利用數(shù)形結(jié)合得出是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:首先列表,然后根據(jù)表格求得所有等可能的結(jié)果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.解:列表得:(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

∴一共有36種等可能的結(jié)果,兩個骰子的點數(shù)相同的有6種情況,∴兩個骰子的點數(shù)相同的概率為:=.故答案為.考點:列表法與樹狀圖法.12、【解析】

根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.13、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.14、1或5.【解析】

小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【詳解】解:當兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點睛】此題考查了平移的性質(zhì),要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.15、6【解析】

首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點D、E、F分別是邊AB、AC、BC的中點,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點睛】本題考查了勾股定理和三角形中位線定理.16、1【解析】分析:根據(jù)點P的移動規(guī)律,當OP⊥BC時取最小值2,根據(jù)矩形的性質(zhì)求得矩形的長與寬,易得該矩形的周長.詳解:∵當OP⊥AB時,OP最小,且此時AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案為1.點睛:本題考查了動點問題的函數(shù)圖象,關(guān)鍵是根據(jù)所給函數(shù)圖象和點的運動軌跡判斷出AP=4,OP=2.三、解答題(共8題,共72分)17、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.18、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙希ㄟ^證明四邊形是平行四邊形達到上述目的.19、(1);(2)【解析】

(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥DE,可以證明AD∥OC,根據(jù)平行線的性質(zhì)可得,則根據(jù)等腰三角形的性質(zhì)可得,利用,化簡計算即可得到答案;

(2)連接CF,根據(jù),可得,利用中垂線和等腰三角形的性質(zhì)可證四邊形是平行四邊形,得到△AOF為等邊三角形,由并可得四邊形是菱形,可證是等邊三角形,有∠FAO=60°,再根據(jù)弧長公式計算即可.【詳解】解:(1)如圖示,連結(jié),∵是的切線,∴.又,∴,∴,∴.∵,∴.∴.∵,∴.∴,即.(2)如圖示,連結(jié),∵,,∴,∴,∴,∴,∵,∴四邊形是平行四邊形,∵,∴四邊形是菱形,∴,∴是等邊三角形,∴,∴,∵,∴的長.【點睛】本題考查的是切線的性質(zhì)、菱形的判定和性質(zhì)、弧長的計算,掌握切線的性質(zhì)定理、弧長公式是解題的關(guān)鍵.20、原式=.∵m是方程的根.∴,即,∴原式=.【解析】試題分析:先通分計算括號里的,再計算括號外的,化為最簡,由于m是方程的根,那么,可得的值,再把的值整體代入化簡后的式子,計算即可.試題解析:原式=.∵m是方程的根.∴,即,∴原式=.考點:分式的化簡求值;一元二次方程的解.21、(1)汽車行駛400千米,剩余油量30升,加滿油時,油量為70升;(2)已行駛的路程為650千米.【解析】

(1)觀察圖象,即可得到油箱內(nèi)的剩余油量,根據(jù)耗油量計算出加滿油時油箱的油量;用待定系數(shù)法求出一次函數(shù)解析式,再代入進行運算即可.【詳解】(1)汽車行駛400千米,剩余油量30升,即加滿油時,油量為70升.(2)設(shè),把點,坐標分別代入得,,∴,當時,,即已行駛的路程為650千米.【點睛】本題主要考查了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點的坐標特征等,關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.22、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】

(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側(cè),根據(jù)二次函數(shù)圖象的性質(zhì)可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結(jié)合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界)時h的取值范圍.(3)設(shè)P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設(shè)原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設(shè)P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【點睛】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質(zhì)、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質(zhì)等知識點.解(1)的關(guān)鍵是掌握待定系數(shù)法,解(2)的關(guān)鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關(guān)鍵是證明△BNP≌△PMQ.23、(1);(2)1.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論