2024屆江蘇省東臺市實(shí)驗(yàn)初中達(dá)標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第1頁
2024屆江蘇省東臺市實(shí)驗(yàn)初中達(dá)標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第2頁
2024屆江蘇省東臺市實(shí)驗(yàn)初中達(dá)標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第3頁
2024屆江蘇省東臺市實(shí)驗(yàn)初中達(dá)標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第4頁
2024屆江蘇省東臺市實(shí)驗(yàn)初中達(dá)標(biāo)名校中考數(shù)學(xué)模擬精編試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省東臺市實(shí)驗(yàn)初中達(dá)標(biāo)名校中考數(shù)學(xué)模擬精編試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃2.如圖,將△OAB繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到△OCD,若OA=4,∠AOB=35°,則下列結(jié)論錯(cuò)誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=43.石墨烯是現(xiàn)在世界上最薄的納米材料,其理論厚度僅是0.00000000034m,這個(gè)數(shù)用科學(xué)記數(shù)法表示正確的是(

)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m4.將拋物線y=2x2向左平移3個(gè)單位得到的拋物線的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)25.若一個(gè)凸多邊形的內(nèi)角和為720°,則這個(gè)多邊形的邊數(shù)為A.4 B.5 C.6 D.76.某班為獎(jiǎng)勵(lì)在學(xué)校運(yùn)動(dòng)會(huì)上取得好成績的同學(xué),計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件.其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購買了多少件.設(shè)購買甲種獎(jiǎng)品x件,乙種獎(jiǎng)品y件.依題意,可列方程組為()A. B.C. D.7.如圖所示的兩個(gè)四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°8.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.109.如圖所示,將含有30°角的三角板的直角頂點(diǎn)放在相互平行的兩條直線其中一條上,若∠1=35°,則∠2的度數(shù)為()A.10° B.20° C.25° D.30°10.下列四個(gè)實(shí)數(shù)中是無理數(shù)的是()A.2.5B.103二、填空題(共7小題,每小題3分,滿分21分)11.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計(jì)).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時(shí)發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時(shí)間忽略不計(jì)),小剛與學(xué)校的距離s(單位:米)與他所用的時(shí)間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時(shí)與家的距離是1200米,從上公交車到他到達(dá)學(xué)校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時(shí)乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.12.如圖,已知,要使,還需添加一個(gè)條件,則可以添加的條件是.(只寫一個(gè)即可,不需要添加輔助線)13.如圖,A、D是⊙O上的兩個(gè)點(diǎn),BC是直徑,若∠D=40°,則∠OAC=____度.14.如圖所示:在平面直角坐標(biāo)系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.15.如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(1,0),半徑為1,點(diǎn)P為直線y=x+3上的動(dòng)點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是______________.16.已知a+=2,求a2+=_____.17.如圖,在四邊形ABCD中,對角線AC,BD交于點(diǎn)O,OA=OC,OB=OD,添加一個(gè)條件使四邊形ABCD是菱形,那么所添加的條件可以是___________(寫出一個(gè)即可).三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.19.(5分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現(xiàn)的結(jié)果;小黃和小石做游戲,制定了兩個(gè)游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整數(shù)倍時(shí),小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會(huì)選擇哪一條規(guī)則,并說明理由.20.(8分)解方程:21.(10分)如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點(diǎn)F.求證:BF=BC;若AB=4cm,AD=3cm,求CF的長.22.(10分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.23.(12分)某中學(xué)為了解八年級學(xué)習(xí)體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A、B、C、D四個(gè)等級.請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;(3)若該中學(xué)八年級共有700名學(xué)生,請你估計(jì)該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名.24.(14分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運(yùn)算法則“減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.2、D【解析】

由△OAB繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項(xiàng);由∠AOB=35°,∠AOC=60°可判斷B選項(xiàng),據(jù)此可得答案.【詳解】解:∵△OAB繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項(xiàng)正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項(xiàng)正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項(xiàng)正確.

故選D.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等及等邊三角形的判定和性質(zhì).3、C【解析】試題分析:根據(jù)科學(xué)記數(shù)法的概念可知:用科學(xué)記數(shù)法可將一個(gè)數(shù)表示的形式,所以將1.11111111134用科學(xué)記數(shù)法表示,故選C.考點(diǎn):科學(xué)記數(shù)法4、C【解析】

按照“左加右減,上加下減”的規(guī)律,從而選出答案.【詳解】y=2x2向左平移3個(gè)單位得到的拋物線的解析式是y=2(x+3)2,故答案選C.【點(diǎn)睛】本題主要考查了拋物線的平移以及拋物線解析式的變換規(guī)律,解本題的要點(diǎn)在于熟知“左加右減,上加下減”的變化規(guī)律.5、C【解析】

設(shè)這個(gè)多邊形的邊數(shù)為n,根據(jù)多邊形的內(nèi)角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n,由多邊形的內(nèi)角和是720°,根據(jù)多邊形的內(nèi)角和定理得(n-2)180°=720°.解得n=6.故選C.【點(diǎn)睛】本題主要考查多邊形的內(nèi)角和定理,熟練掌握多邊形的內(nèi)角和定理是解答本題的關(guān)鍵.6、A【解析】

根據(jù)題意設(shè)未知數(shù),找到等量關(guān)系即可解題,見詳解.【詳解】解:設(shè)購買甲種獎(jiǎng)品x件,乙種獎(jiǎng)品y件.依題意,甲、乙兩種獎(jiǎng)品共20件,即x+y=20,購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,即40x+30y=650,綜上方程組為,故選A.【點(diǎn)睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.7、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點(diǎn)睛】本題考核知識點(diǎn):相似多邊形.解題關(guān)鍵點(diǎn):理解相似多邊形性質(zhì).8、D【解析】

根據(jù)有理數(shù)乘法法則計(jì)算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點(diǎn)睛】考查了有理數(shù)的乘法法則,(1)兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(2)任何數(shù)同0相乘,都得0;(3)幾個(gè)不等于0的數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;(4)幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0時(shí),積為0.9、C【解析】分析:如圖,延長AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故選C.10、C【解析】本題主要考查了無理數(shù)的定義.根據(jù)無理數(shù)的定義:無限不循環(huán)小數(shù)是無理數(shù)即可求解.解:A、2.5是有理數(shù),故選項(xiàng)錯(cuò)誤;B、103C、π是無理數(shù),故選項(xiàng)正確;D、1.414是有理數(shù),故選項(xiàng)錯(cuò)誤.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、①②③【解析】

由公交車在7至12分鐘時(shí)間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時(shí)間,進(jìn)而可知小剛上公交車的時(shí)間;由上公交車到他到達(dá)學(xué)校共用10分鐘以及公交車行駛時(shí)間可知小剛跑步時(shí)間,進(jìn)而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時(shí)間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時(shí),公交車行駛的距離為1200-400=800m,則公交車行駛的時(shí)間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時(shí)乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯(cuò)誤,再由圖可知小明跑步時(shí)間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用.12、可添∠ABD=∠CBD或AD=CD.【解析】

由AB=BC結(jié)合圖形可知這兩個(gè)三角形有兩組邊對應(yīng)相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點(diǎn)睛】本題考查了三角形全等的判定,結(jié)合圖形與已知條件靈活應(yīng)用全等三角形的判定方法是解題的關(guān)鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.13、50【解析】

根據(jù)BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據(jù)半徑相等所對應(yīng)的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【點(diǎn)睛】本題考查了圓的基本概念、角的概念及其計(jì)算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關(guān)鍵14、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進(jìn)而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點(diǎn)評:此題主要考查了圓周角定理及解直角三角形的綜合應(yīng)用能力,能夠正確的構(gòu)建出與已知和所求相關(guān)的直角三角形是解答此題的關(guān)鍵.15、2【解析】分析:因?yàn)锽P=,AB的長不變,當(dāng)PA最小時(shí)切線長PB最小,所以點(diǎn)P是過點(diǎn)A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時(shí)切線長PB最小,設(shè)直線與x軸,y軸分別交于D,C.∵A的坐標(biāo)為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點(diǎn)睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因?yàn)橹苯侨切沃械娜呴L滿足勾股定理,所以當(dāng)其中的一邊的長不變時(shí),即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.16、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點(diǎn):完全平方公式.17、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四邊形ABCD是平行四邊形,再根據(jù)菱形的判定定理添加鄰邊相等或?qū)蔷€垂直即可判定該四邊形是菱形.所以添加條件AB=AD或BC=CD或AC⊥BD,本題答案不唯一,符合條件即可.三、解答題(共7小題,滿分69分)18、(1),;(2)P,.【解析】試題分析:(1)由點(diǎn)A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點(diǎn)A的坐標(biāo),再由點(diǎn)A的坐標(biāo)利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點(diǎn)B坐標(biāo);(2)作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,連接PB.由點(diǎn)B、D的對稱性結(jié)合點(diǎn)B的坐標(biāo)找出點(diǎn)D的坐標(biāo),設(shè)直線AD的解析式為y=mx+n,結(jié)合點(diǎn)A、D的坐標(biāo)利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點(diǎn)P的坐標(biāo),再通過分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.試題解析:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=-x+4,得:a=-1+4,解得:a=3,∴點(diǎn)A的坐標(biāo)為(1,3).把點(diǎn)A(1,3)代入反比例函數(shù)y=,得:3=k,∴反比例函數(shù)的表達(dá)式y(tǒng)=,聯(lián)立兩個(gè)函數(shù)關(guān)系式成方程組得:,解得:,或,∴點(diǎn)B的坐標(biāo)為(3,1).(2)作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,連接PB,如圖所示.∵點(diǎn)B、D關(guān)于x軸對稱,點(diǎn)B的坐標(biāo)為(3,1),∴點(diǎn)D的坐標(biāo)為(3,-1).設(shè)直線AD的解析式為y=mx+n,把A,D兩點(diǎn)代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點(diǎn)P的坐標(biāo)為(,0).S△PAB=S△ABD-S△PBD=BD?(xB-xA)-BD?(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考點(diǎn):1.反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;2.待定系數(shù)法求一次函數(shù)解析式;3.軸對稱-最短路線問題.19、(1):,,,,,,,,共9種;(2)小黃要在游戲中獲勝,小黃會(huì)選擇規(guī)則1,理由見解析【解析】

(1)利用列舉法,列舉所有的可能情況即可;

(2)分別求出至少有一張是“6”和摸出的紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整數(shù)倍時(shí)的概率,進(jìn)行選擇即可.【詳解】(1)所有可能出現(xiàn)的結(jié)果如下:,,,,,,,,共9種;(1)摸牌的所有可能結(jié)果總數(shù)為9,至少有一張是6的有5種可能,∴在規(guī)劃1中,(小黃贏);紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整倍數(shù)有4種可能,∴在規(guī)劃2中,(小黃贏).∵,∴小黃要在游戲中獲勝,小黃會(huì)選擇規(guī)則1.【點(diǎn)睛】考查列舉法以及概率的計(jì)算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.20、x=-4是方程的解【解析】

分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.【詳解】∴x=-4,當(dāng)x=-4時(shí),∴x=-4是方程的解【點(diǎn)睛】本題考查了分式方程的解法,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗(yàn)根.21、(1)見解析,(2)CF=cm.【解析】

(1)要求證:BF=BC只要證明∠CFB=∠FCB就可以,從而轉(zhuǎn)化為證明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根據(jù)三角形的面積等于BD?CE=BC?DC,就可以求出CE的長.要求CF的長,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根據(jù)勾股定理就可以求出,由此解決問題.【詳解】證明:(1)∵四邊形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四邊形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD=.又∵BD?CE=BC?DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.【點(diǎn)睛】本題考查矩形的判定與性質(zhì),等腰三角形的判定定理,等角對等邊,以及勾股定理,三角形面積計(jì)算公式的運(yùn)用,靈活運(yùn)用已知,理清思路,解決問題.22、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論