版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
IncollaborationwithPwCTransformingEnergy
DemandW
H
I
T
E
P
A
PE
RJA
N
U
A
RY
20
2
4Images:GettyImagesContentsForeword34Executivesummary1
Whytransformingenergydemandmatters2
Thethreeenergydemandlevers3
Businesssolutions–overallapproach51113154
Businesssolutions–selectedinterventionsforchangeinbuildings,industryandtransport4.1
Industry4.2
Buildings1624293337383840444.3
Transport5
GovernmentleadershipConclusionAppendixA1
ModellingmethodologyContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.The?ndings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.?2024WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.TransformingEnergyDemand2January2024TransformingEnergyDemandForewordAnaBotinBobMoritzGlobalChair,
PwC;Member,InternationalBusinessCouncilOlivierSchwabManagingDirector,WorldEconomicForumExecutiveChairman,TheSantanderGroup;Chair,
InternationalBusinessCouncilAstheglobalenergysystemundergoesarapidtransformation,leadersacrossallsectorsneedtocollaboratetoaccelerateanenergytransitionthatcreatespositiveoutcomesforpeople,societyandtheplanet.Theprivatesectorcanplayaleadingroleindrivingthistransformation.cost-ef?cient
31%
reductionofdemand,sharedacrossalleconomicsectors.
Thesegainsaredeliverable
now,
atattractivereturns,needingno
newtechnology.
Such
concerted
actionwouldunlockgrowthandproductivitywhilegettingtheworldbackontracktomeetthetargetssetsbytheParisAgreement.Atthesametime,itwouldsupportdeliveryofthepledgebyover120countriesatCOP28todoubletheglobalaverageannualrateofenergyef?ciencyimprovement.Thatiswhyayearago,theInternationalBusinessCouncil(IBC),agroupthattogetherrepresents3%ofglobalenergyuse,decidedtofocusonenergydemand.Thisisanunder-addressedareathatwillallowustoincreaseeconomicoutput,whilereducinggreenhousegasemissions(GHG)anddrivingupglobalaccesstoenergy.These?ndingsshouldbeexcitingforallleaders,ingrowthandmaturemarketsalike,andwethankalltheIBCmembersfortheirsupportindrivingthiswork.Ourambitionistogettheworldtoactasmuchonenergydemandassupplyitseffortstoreachnetzero.We
hopethispaperwillinspiremanyotherbusinessesandgovernmentstojointhiseffort.Thereisnotimetolose.Ourresearchshowsthattherearemanytangibleactionsthatallbusinessescantaketodaytoactonenergydemand.
Thepotential
ofthis
demand-sideactionisextraordinary,
offering
a
short-term,TransformingEnergyDemand3Executive
summaryActionsonenergydemandcanbetakenbyallcompaniesnow,
are
pro?tableandcanaccelerateprogress
towardsclimategoals.Thevalueofactiononenergydemandiseconomicoutput.Affordabilityisalsoclear,
withinterventionspotentiallyfullypaidbackgloballywithinadecade,drivingestimatedannualsavingsintherangeof$2trillion.compelling:apossible31%reductioninenergyintensityandupto$2trillioninannualsavingsifmeasuresweretobetakenby2030(seeAppendix,A1:Methodology).Reducingenergyintensity–energyusedperunitofgrossdomesticproduct(GDP)–wouldboostgrowthbyenablingpreviouslywastedorover-utilizedenergytoberedirectedtomoreproductiveactivities.Itwouldalsohelpcompaniessavecashandmaintaincompetitiveadvantagewhilereducingemissions.Thispaperoutlinesthevalueofactionsonenergydemandfromtheprivateandpublicsectorsandhowtodeliverthem.Actionsaredoabletoday,atattractivereturnswithexistingtechnology,andsoitisbelievedthisestablishesacompellingcasetoactasmuchonenergydemandassupplyinthejourneytonetzero.Threeleverscandeliverthischange.First,“energysavings”–operationalimprovementinterventionsfundedthroughoperatingexpenditure(OpEx).Resultsaretypicallyimmediatebutoftenoverlookedastheyrequirecoordinatingmanyinterventionsacrossanorganizationandconstantenergycostimprovement.“Energyef?ciency”poolsmeasuresunderdirectcompanycontrolthatrequirecapitalexpenditure(CapEx).Together,
savingsandef?cienciesofferbusinessesthelower-hangingfruitandatleasthalfoftheimprovementsinenergyintensitythatthisresearchhasidenti?ed.The?nalleveris“valuechaincollaboration”,whereworkingdirectlywithsuppliersandbusinesspartnersofferscompanyagencyoverenergyimpact,reducingcostandgettingaheadoftheracetonetzero.Findingawaytoreduceorevenreversethepaceofenergydemandgrowthwhilesupportingeconomicoutputiscritical.By2050,theworld’s
populationwillgrowbytwobillion,andGDPisforecasttodouble.Emergingmarketsanddevelopingeconomiesneedabundantandlow-costenergytoenablegrowthandmeetdevelopmentgoals.Simultaneously,theworldistargetingsupplydecarbonization.Actingondemandandsupplysimultaneouslyisthebestwaytoachievethesechanges.Eachsectorneedsa“roadmap”toguidecompanyandgovernmentaction.Companyandnationalenergytransitionplansareneededtocapturethebene?tsofmanagingenergyconsumptionwhileintegratingsupply-sideactions.Businessesacrosstheenergydemandandsupplyspectrumwillneedtoworktogetherwithgovernmenttodeveloptheseplans
and
increaseawarenessoftheroutesandresultsavailabletoaddressbarrierstoaction.Actingonenergyconsumptionisdoable,affordableandpro?table.Thisresearchshowsthatallcompaniesandcountriescanuseexistingleverstoreduceenergyintensity.Acrossbuildings,industryandtransport(BIT),InternationalBusinessCouncil(IBC)examplesillustratethattheseactions,wheresupportedbyappropriatepublicpolicy,canenabletheworldtoreduceitsenergyneedsbyapproximatelyathirdwhilefreeingfurtherDevelopingtheseplansistheessentialnextstepinraisingawarenessandgettingbehindactiononenergydemand.AtCOP28,over120countriespledgedtodoublethepaceofenergyef?ciencyimprovement.TheIBCcanbealeadingprivatesectorgrouptosupportcountriesintheirambition.TransformingEnergyDemand4Whytransforming1energydemandmattersActionsonenergydemandcanreduceenergyconsumptionbyupto31%,savingupto$2trillionperannum.Whatifabusinesscouldreduceitsannualoperatingcostsby10%withinthreeyears?Whatwouldbetheimplicationsforacompany’sstockpriceifitcouldincreasemarginsonasustainedbasisby200-300basispoints?Allwhilesimultaneouslybuildingbothmeasurableprogressonreducinggreenhousegas(GHG)emissionsanddeliveringgreaterresilienceinoperations.Thesearenottrickquestions,butarebasedonrealexamplesfromIBCmembers.Theanswerliesattherootofthisstudy:transformingenergydemand.FIGURE1
TheenergytriangleSustainabilityandclimatechangeEnablers:Policy,?nance,collaborationtechnology,digitalizationandworkforceEnergytransitionGeopoliticsTimeframeSupplyRenewableNuclearDeliveryTransmissionPipelinesDemandIndustryUrbanandbuildingsFossilfuelsInfrastructureTransportJustandaffordabilityEnergysecurityandresilienceEconomiesSource:WorldEconomicForum,FosteringEffectiveEnergyTransition,2023.Note:Thetrianglerepresentstheenergytrilemma–theimperativeofdeliveringajustenergytransitionwhileensuringaffordability,securityandsustainability.TransformingEnergyDemand5To
date,therehasbeentooTheproblemapproximately60%ofcurrentdemand.Thesemarketsneedaclearrangeofroutestoeconomicgrowth,whichincludeabundantaccesstoaffordableheavy
a
relianceon
governmentsandthe
energyindustry,
notthewider
economy,
todelivernetzero.Theenergytransitioncreates
immenseandgrowingtensionsbetweentheimperativesofsecurity,affordabilityandsustainability(seeFigure1).cleanenergy.
Ifthefuturelevelofenergydemandis3notmetbyadequatesupply,itcouldleadtohigherpricesandobstaclestogrowthandcompetitiveness.SecuritySustainabilityOnenergysecurity,the?rstchallengeistosimultaneouslymaintainasecureandstablesupplyofenergyamidanincreasinglyvolatilegeopoliticalsituation,allwhiletransformingtoday’shydrocarbon-dominated
supply.In2021-22,Europegrappledwithenergyshortagesandpricesthathavethreatened
theindustrialbaseandforcedgovernmentstoprocuretheiroilandgasfromthe?owsnormallydestinedtootheremergingmarketsThethirdchallenge,sustainability,istomeetthisgrowthinenergydemandinawaythatkeepstheworldontracktomeetthe2050ParisAgreement.Evenwithanassumedthree-foldgrowthinrenewableenergy,scenariosforecastasigni?cantshortfallincleanenergysupplyby2050(seeFigure3),whichcouldbemetwithmorefossilfuel-basedenergy.Thisisas,ifnotmore,trueinEMDE,duetothelackofadequaterenewablesupplychains.anddevelopingeconomies(EMDE),
whichin1turnhadtoresorttohighercoalconsumptionandoverallfacehigherenergyprices.To
date,themajorityofdebateandactionhasbeenfocusedongovernmentsandenergycompaniesdrivingchangesinenergysupply.Thishasresultedinremarkablechangesintheenergysystem,withrapidincreasesinemissions-freeanddecentralisedelectricitygeneration.However,
thetrajectoryoftheenergytransitionremainsoff-trackcomparedtoclimateanddevelopmentgoals,hinderedbyissuessuchasslowpermittingandpooraccessto?nance.Therefore,whileactiononenergysupplyremainscrucial,itwillbedif?cultforittobetheansweralone.AffordabilityThesecondchallenge,affordability,istoensurethatenergyiseconomicnotjustforbusinessesbutforsocietyingeneral.Whileforecastsdifferonthelevelofenergydemandin2050(seeFigure2),theexpecteddoublingofglobalgrossdomesticproduct(GDP)andtheadditionoftwobillionpeoplewillintensifypressureonenergysupplysystems,particularlyinEMDE,whichareresponsiblefor2FIGURE2
Forecastdemandgrowthto2050Percentagegrowthintotalenergyconsumptionacrossdifferingglobalscenarios(sample)%,baseyearto205033%21%14%14%9%8%8%-3%-22%Shell“Archipelago”(baseyear2019)SchneiderTotalEnergiesBP“Newmomentum”(baseyear2019)XOM“Global
Electric“New
“Momentum”outlook”(base
Normal”(baseyear2021)
year2018)Equinor“Walls”(baseyear2020)IEA“STEPS”(baseyear2022)IEA“NetZero”(baseyear2022)(baseyear2021)IEA“APS”(base2022)CurrentpoliciesFurtheractionSources:InternationalEnergyAgency(IEA),NetZeroRoadmap:AGlobalPathwaytoKeepthe1.5CGoalinReach,2023;Shell,TheEnergySecurityScenarios,2019;ExxonMobil,ExxonMobilGlobalOutlook,2023;SchneiderElectric,Backto2050:1.5°Cismorefeasiblethanwethink,2021;Equinor,
2023EnergyPerspectives,2023;bp,bpEnergyOutlook2023Edition,2023;IEA,WorldEnergyOutlook2023,2023;TotalEnergies,TotalEnergiesEnergyOutlook2022,2022.TransformingEnergyDemand6FIGURE3
ShortfallinrenewableenergysupplyvsdemandfromcommercialsourcesGlobalcommercial*total?nalconsumptionandrenewableenergysupplyandIEAstatedpolicies(STEPS)scenario,exajoules(EJ),2022-205075%42%SupplyshortfallSupplyshortfall3923042277520222050CommercialenergydemandRenewableenergysupply*Allenergydemandfromcommercialbuildings,industryandtransport,excludingresidentialbuildingsandroadtransport.Sources:IEA,WorldEnergyOutlook2023,2023.Thesolution:actiononenergyconsumptionalongsidesupplyItis,therefore,vitaltoaddressenergydemandalongsidesupply,reducingtheenergyintensityofcurrentactivityandfuturegrowth.Demand-sideactionisanareawherethebusinessandsocialcasesfordemand-sideactionoverlapclosely.Suchactioncanincreaseproductivity,whileunlockingaccesstoenergyandeconomicgrowth.Thisisdonebyreallocatingpreviouslywastedorunnecessarily-usedenergytonewconsumersand/ornewuses.Afterall,thecheapestformofenergyisenergythatisnotused.There’s
alsoaclearopportunitycost–anydelayinactionwillforceincreasedenergyspendingandcontinuedmissingofclimategoals.usinglessenergytocreatethesame(orgreater)output.Thisinturnwillreduceemissionsintensity(thevolumeofemissionscreatedinmanufacturingaproductorprovidingaservice)duetoenergy-relatedemissionsbeingreduced.Measurestotackleenergyconsumptionarealsobene?cialacrossallmarkets,asdeliveringhigheroutputwithlowerenergyuseisauniversalgood.However,bene?tswillvaryinimportancebetweenmarkets.Forexample,indevelopedeconomies,lowerenergyintensityhelpstoenhancecompetitivenessthroughlowertotalenergycostwhileattenuatingenvironmentalrisks.InEMDE,takingactiontomanageenergydemandaswellasfocusingonthesupplycanimproveaccesstosecureenergy,improvingtheabilitytoattractinvestmentwhileofferingtheopportunitytoavoidlow-ef?ciencylegacysystemsseenindevelopedeconomies.Thegreatnewsisthattransformingenergydemandisdoableandaffordablenow.
Allcompanies,regardlessofsector,
cantapintoexisting,affordabletechnologiestoreduceenergyintensity–thatis,TransformingEnergyDemand7SizeoftheenergydemandprizeThisstudybreaksglobalenergydemandinto“BITs”
–buildings,industryandtransport.Together,acrosstheseareasthatwouldreduceoverallenergyintensitybyaround31%relativetocurrentlevels(seeFigure4),withfurther,
harder-to-deliverinterventionsincreasingthisto42%(seeFigure6).theseaccountfor94%ofglobaldemand.Achievable
interventionshavebeenidenti?ed45FIGURE4
Short-termreductionpotentialofenergydemandactions(achievablescenarioonly)1Potentialenergyintensityreductionbyvertical(achievable*)22022globalenergydemandbyvertical3Potentialenergyintensityreductionforthewholeeconomy(achievable*)442EJ31%6%Other38%4%Other26%Transport5%Transport29%21%30%Buildings12%Buildings38%Industry11%IndustryIndustryBuildingsTransport2022demand–In(1),individualinterventionsbyverticalareidenti?ed(e.g.installingmoreef?cientelectricmotors),andtheirpotentialimpactonvertical-wideenergyintensityissummed.–To
gaintheoverallimpactofthesechangesonglobaldemand,thesearethenscaledbytheproportionofenergydemandthateachverticalrepresents(2).Inaddition,anaverageintensityreductionisappliedtosectorsnotconsideredindepth(de?nedas“other”)–Thisresultsin(3),thepotentialcombinedimpactofindividualinterventionsonglobalenergyintensity.*Achievableisde?nedasinterventionsthatarecurrentlytechnologicallyavailableatscalewithassociateddataavailableontheirenergyintensityimpact;**Percentagedoesnottotal31%duetorounding.Sources:IEA,WorldEnergyOutlook2023,2023.To
understandhowtheseinterventionswouldaffecttheworldovertime,thisreportconsiderswhatwouldoccuriftheseinterventionsweregloballyenactedby2030(seeAppendix,A1:Methodology).Thiswasachievedby?rstmodellingenergydemandin2030ifnoenergyintensityimprovementweremadebetween2022and2030(“noef?ciency”scenario,seeFigure5).TransformingEnergyDemand8FIGURE5
Forecastof“noef?ciency”scenario,2030EJ,2022-2030,global+30%1315744422022energyconsumptionImpactofmakingnoenergyef?ciencyprogress2030“noef?ciency”scenario2022energydemand:Total
energyconsumed,2022Impactofmakingnoenergyef?ciencyprogress2030“noef?ciency”scenario:Forecast2030energydemandifnofurtheref?ciencygainsaremadeSource:IEA,WorldEnergyOutlook2023,2023.If
appliedto
the“no
ef?ciency”
scenario
in
2030,
theseinterventions
would
allow
output
to
be
maintained
withless
energy,
resulting
in
a
reduction
in
energy
intensityaround
19%
below
thelevelsforecast
if
currentpoliciesare
enacted(seeFigure
6).
On
an
annualbasis,
this
would
correspondto
an
improvementin
energy
intensity
of
4.6%
per
annum.
Such
gainsare
ahead
of
thetarget
set
by
theSustainableDevelopment
Goals
(SDGs),
theInternational
EnergyAgency
(IEA)
and
theInternational
Renewable
EnergyAgency
(IRENA)
of
doublingthecurrent
rate
to
over4%
to
reach
net
zero.
As
a
result,
if
delivered,
theseinterventions
would
put
the
world
ahead
of
thetargets
in
the
Paris
Agreements.FIGURE6
Impactofproposedinterventionsonglobalenergydemand,20306EJ,2030,global-31%-19%-42%Impactofachievableinterventionsvs“noef?ciency”Impactofambitioninterventionsvs“noef?ciency”574482406393331“Noef?ciency”scenario2023“currentpolicies”scenario2030net-zeroscenario2030achievableenergydemand*2030ambitionenergydemandForecastenergydemandin2030ifhistoricalrateofenergyef?ciencyimprovementismaintainedNetzeroscenarioforecastin2030
Forecastenergydemandifallachievableandallambitioninterventionsareputinplaceby2030Forecastenergydemandifallachievableinterventionsareputinplaceby2030*Achievable”scenariorepresentsdif?cultstepstoimplementthatwillreduceenergyintensity,butthatarebasedontechnologiesthatareavailableatscaletoday,makingthemtechnicallyachievable.“Ambition”scenariorepresentstheimpactofallachievableinterventionsalongsidesomelessproven,moredif?culttoscaleinterventions.Source:IEA,WorldEnergyOutlook2023,2023.TransformingEnergyDemand9Evenwiththeenergynumbersbeingsocompelling,theseinterventionswouldhavetobeaffordable.Again,actingonenergydemandoffersgoodnews,suggestingaclearrangeofrouteswhichcomeatafractionofthelong-termcapitalexpenditureneededtoswitchenergysupplyawayfromcumulativecostofenergyef?ciencyinterventionsby2030toreachnetzeroat$14trillion,
this7studysuggeststhat,ofthis,upto$8trillionisrepaidduringtheperiod,withfurtherannualsavingsofupto$2trillionperannumatcurrentprices,dependingonhowenergypricingvariesinresponsetointensityreduction(seeFigure7).fossilfuel.WhilearecentreportbyIRENAputstheFIGURE7
Impactofenergydemand-sideleversonglobalenergydemandandillustrativeassociatedcostimpacts,2022-30GlobalenergydemandforecastscenariosandassociatedcostreductionsEJ,global490480470460450440430420410400390380370360350340330Currentpoliciesscenario219%$0.9trillionadditionalspendandapproximately3,000additionalpowerstationsif1Combined$2trillionsavingsvsforecastspendundercurrentpoliciesareenactedwithnofurtheractionondemandcurrentpolicies2022demand$1.1trillioninenergysavings2022demand1comparedtoAchievableenergydemand$2.5trillioninenergysavings1comparedto2022demandAmbitionenergydemand10020222030Notes:1Assumescurrentaveragepriceperjouletostayconstant.Thisisillustrativeandtoquantifythetheoreticalsizeoftheprizebasedoncurrentspending.Actual?gurewouldvarydependingonresponseofenergypricestoreductionindemand,andchangesinoverallenergysystemsandtheirfuelmixes.;
2IEASTEPSscenarioSource:IEASTEPSscenarioWhilesupply-sideinterventionsremain
crucial,interventionsonenergyconsumptionareeffectively
self-fundingduringtheperiod,canbepaidbackwithinthedecadeandembedlong-termef?ciency
–
allwhileshiftingtheworld’s
abilitytodelivertheParisAgreement.Indevelopingtheseconclusions,aglobalsurveywasconducted,whichinvolvedcontributionsfromthe120membersoftheWorldEconomicForum’sInternationalBusinessCouncil(IBC),agroupofmultinationalcompaniesrepresentingabout3%ofglobalenergydemandfromtheirdirectoperations.Thesurveyaimedtounderstandthecurrent
rolethatcompaniesareplayingintheenergytransition,whatispreventingfurtheractionandhowtheseissuescanbeovercome.Inaddition,memberinterviewswereconductedtoidentifyexamplesofreplicableenergyconsumption-focusedmeasures.Theresultsoftheseinteractionsarecapturesintherecommendationsthroughouttheremainderofthisreport.To
helporganizationspursuethisprize,thisreportidenti?estheopportunitiesandthebarrierstoadoption,highlightingtheleversthatwillhelpcompaniesreduceintensity,anddevelopingsuggestedroutestofollowtodeliverthesechanges.Mostoftheseinterventionscanbedeployednow,drivingsigni?cantimprovementsinlessthanayear.TransformingEnergyDemand
10Thethree
energydemandlevers2Thereare
threeexisting,deliverableleverstoreduceenergyintensity,butthesefacechallengesthatlimituptake.FIGURE8
ThreeleversenergydemandleversMedianenergyintensityimpactLeverDescriptionCasestudyLowercomplexity/shorterEnergysavingInterventionstosaveenergybychangingacompany’s
ongoingcorebehavioursandactivities,primarilyOpExfundedwithshort-termpaybackAround–AI-drivensoftwaretocontrolexistingHVAC
systems10
%payback–ReducesHVAC
energyintensityby20-25%,paybackoflessthan1year123Energyef?ciencyUsinglessenergytoperformAround–Retrofittingbuildingsusingsmartproducts,lighting,improvedHVACpaybackbyinvestingincore
30%thesametask,typicallyfunded1byCapExwithmedium-term–Reducedenergyrequiredfornon-industrialsectoroperationsby27%businessprocesses–Paybacklessthan15years2Value
chaincollaborationScalable,replicablepartnershipswithadjacentsupplychainstoachieveenergyandemissionsintensityimprovementsthroughdemandsubstitution,demandconsolidationand?exibledemandresponseAround–Swedishsulphuricacidplantsupplyingenergytourbandistrictheating45%–Reducedcity’s
heatingenergyintensityby25%Highercomplexity/longer–Lessthan1-yearpaybackpaybackNote:Impactde?nedaspercentagedecreaseinenergyintensityofagivenprocess–e.g.?ttingLEDlightscanreduceenergyintensityoflightingdemandby75%–notthepercentagedecreaseinacompany’s
overallenergyintensity1Whileenergyef?ciencyisawidelyusedandunderstoodterm,hereitisde?nedinthesenseofaparticularinterventiontype(i.e.CapEx-ledwaystouselessenergytoperformthesametask).Itthereforeisdifferentfrom“energyintensity”andcommonuseof“energyef?ciency”inthiscontext.
2ThisexampleisfromAramco’s
LeadbyExampleprogramme.Seeonlinecasestudies:/energy-and-industry-transition-intelligence/transforming-energy-demandLevers1and2offerimmediatevalue.Savingsandef?ciencyinterventionscandeliverareductioninprocessintensityofupto90%withnoneedtoreplacechangeswithinnovationintechnology,regulationorexternalfunding.Electri?cationisakeyvectorforthis,oftendrivinglowerenergyintensityinexistingprocessespurelythroughinherentlowerlevelsofwastagecomparedtocombustion-basedalternatives.Progresscanbedrivenevenfurtherthroughafocusonrepeatedapplicationoftheseleverswithacultureofcontinuousimprovement.Whileeachindividualactionmaybesmall,theycancompoundtodrivemajorchangesinintensityovertime(seecasestudy1).Thethirdlever,
collaboration,showshowcompaniescancreatenewvaluepoolsandrevenuestreamsbycollaboratingwithadjacentsupplychainsandthepublicsector.
Thismustbedoneinconcertwithenergysuppliersandwitha
long-termviewtoTransformingEnergyDemand
11ensure
future-proofchange.Ratherthanwaitingfortheenergysupply-sideto?xitself,companiesfromallsectorscanbecomeactiveparticipantsintheenergytransition.andgrid“wheeling”tocreateutility-scalesolarfarms.Withlocalbanksupportandmining?rmguarantees,theyachievedrapidgrid-scalepowerdeploymentin18months,fasterthanseeninmostothercountriesandasigni?cantachievementgiventhecountry’s
unstablecoal-basedenergysupply.Anexampleofthisleverisenergydemandconsolidation–wherecompaniesand/orotherpartiescollaborate(e.g.inanindustrialcluster)todrivechangesinenergyintensity,suchasthroughdistrictheating(seeFigure8),orlonger-termthroughthedesignofcircularbusinessmodels.Businessescanalsocollaboratetoachievesupplysubstitution–usingtheirenergydemand,inconcertwith?nanciers,energycompaniesandgovernment,tochangetheirenergyandemissionsintensity.InSouthAfrica,AfricanRainbowMineralsandotherminingcompaniespartneredwithrenewabledevelopers,usingofftakecontractsCollaborationcanalsoenable?exibledemandresponse–wherecompaniescollaboratewiththeirpowerproviderandgovernmenttoadaptoperationsbasedondemandandpricesignals.Thisincludesreducingoperationsatpeaktimesandinstallingenergygenerationorbattery
storageto
enable?exibleenergy
usage.
While
demand
response
predominantlyimprovesemissionsintensity(asfossilfuelsarecommonlyusedattimesofhighdemand),itcanalsoimprovethegrid’s
ef?ciencyandeffectiveness.8Thechallenges:growingawarenessanddevelopinganenablingpolicyenvironmentWhiletheeconomicandbusinesscaseisclear,therearethreesigni?cantbarriers:bymanydifferentactorswithinanorganization.42%ofboardsdiscussenergyintensityvs82%forcarbonintensity1.
LowawarenessSincemostinterventions–changinglightbulbsinonelocation,installingnewmotorsinanother
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工裝木工泥工水電合同范例
- 擬寫購買合同范例
- 物流裝車包工合同范例
- 液壓元件采購合同范例
- 口罩代購居間合同范例
- 體育行業(yè)合同范例
- 承包鴨毛合同范例
- 倫敦就業(yè)合同范例
- 加盟培訓(xùn)合作合同范例
- 承租倉庫合同范例
- 《熱脹冷縮》參考課件
- 中職產(chǎn)教融合建設(shè)實(shí)施方案
- 如何在銷售過程中克服客戶的各種拒絕
- 了解孩子陪伴成長
- 安全生產(chǎn)合規(guī)性評(píng)估報(bào)告
- 9歲兒童智商測(cè)試題
- 大鎖孫天宇小品《時(shí)間都去哪了》臺(tái)詞劇本完整版-一年一度喜劇大賽
- 消防立管永臨結(jié)合施工方案
- 人教版八年級(jí)物理下冊(cè) 實(shí)驗(yàn)題02 壓力壓強(qiáng)實(shí)驗(yàn)(含答案詳解)
- 抖音快手短視頻創(chuàng)業(yè)項(xiàng)目融資商業(yè)策劃書
- 滬教版英語八年級(jí)上冊(cè)知識(shí)點(diǎn)歸納匯總
評(píng)論
0/150
提交評(píng)論