世界經(jīng)濟(jì)論壇-轉(zhuǎn)變能源需求(英)-2024.1_第1頁
世界經(jīng)濟(jì)論壇-轉(zhuǎn)變能源需求(英)-2024.1_第2頁
世界經(jīng)濟(jì)論壇-轉(zhuǎn)變能源需求(英)-2024.1_第3頁
世界經(jīng)濟(jì)論壇-轉(zhuǎn)變能源需求(英)-2024.1_第4頁
世界經(jīng)濟(jì)論壇-轉(zhuǎn)變能源需求(英)-2024.1_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

IncollaborationwithPwCTransformingEnergy

DemandW

H

I

T

E

P

A

PE

RJA

N

U

A

RY

20

2

4Images:GettyImagesContentsForeword34Executivesummary1

Whytransformingenergydemandmatters2

Thethreeenergydemandlevers3

Businesssolutions–overallapproach51113154

Businesssolutions–selectedinterventionsforchangeinbuildings,industryandtransport4.1

Industry4.2

Buildings1624293337383840444.3

Transport5

GovernmentleadershipConclusionAppendixA1

ModellingmethodologyContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.The?ndings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.?2024WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.TransformingEnergyDemand2January2024TransformingEnergyDemandForewordAnaBotinBobMoritzGlobalChair,

PwC;Member,InternationalBusinessCouncilOlivierSchwabManagingDirector,WorldEconomicForumExecutiveChairman,TheSantanderGroup;Chair,

InternationalBusinessCouncilAstheglobalenergysystemundergoesarapidtransformation,leadersacrossallsectorsneedtocollaboratetoaccelerateanenergytransitionthatcreatespositiveoutcomesforpeople,societyandtheplanet.Theprivatesectorcanplayaleadingroleindrivingthistransformation.cost-ef?cient

31%

reductionofdemand,sharedacrossalleconomicsectors.

Thesegainsaredeliverable

now,

atattractivereturns,needingno

newtechnology.

Such

concerted

actionwouldunlockgrowthandproductivitywhilegettingtheworldbackontracktomeetthetargetssetsbytheParisAgreement.Atthesametime,itwouldsupportdeliveryofthepledgebyover120countriesatCOP28todoubletheglobalaverageannualrateofenergyef?ciencyimprovement.Thatiswhyayearago,theInternationalBusinessCouncil(IBC),agroupthattogetherrepresents3%ofglobalenergyuse,decidedtofocusonenergydemand.Thisisanunder-addressedareathatwillallowustoincreaseeconomicoutput,whilereducinggreenhousegasemissions(GHG)anddrivingupglobalaccesstoenergy.These?ndingsshouldbeexcitingforallleaders,ingrowthandmaturemarketsalike,andwethankalltheIBCmembersfortheirsupportindrivingthiswork.Ourambitionistogettheworldtoactasmuchonenergydemandassupplyitseffortstoreachnetzero.We

hopethispaperwillinspiremanyotherbusinessesandgovernmentstojointhiseffort.Thereisnotimetolose.Ourresearchshowsthattherearemanytangibleactionsthatallbusinessescantaketodaytoactonenergydemand.

Thepotential

ofthis

demand-sideactionisextraordinary,

offering

a

short-term,TransformingEnergyDemand3Executive

summaryActionsonenergydemandcanbetakenbyallcompaniesnow,

are

pro?tableandcanaccelerateprogress

towardsclimategoals.Thevalueofactiononenergydemandiseconomicoutput.Affordabilityisalsoclear,

withinterventionspotentiallyfullypaidbackgloballywithinadecade,drivingestimatedannualsavingsintherangeof$2trillion.compelling:apossible31%reductioninenergyintensityandupto$2trillioninannualsavingsifmeasuresweretobetakenby2030(seeAppendix,A1:Methodology).Reducingenergyintensity–energyusedperunitofgrossdomesticproduct(GDP)–wouldboostgrowthbyenablingpreviouslywastedorover-utilizedenergytoberedirectedtomoreproductiveactivities.Itwouldalsohelpcompaniessavecashandmaintaincompetitiveadvantagewhilereducingemissions.Thispaperoutlinesthevalueofactionsonenergydemandfromtheprivateandpublicsectorsandhowtodeliverthem.Actionsaredoabletoday,atattractivereturnswithexistingtechnology,andsoitisbelievedthisestablishesacompellingcasetoactasmuchonenergydemandassupplyinthejourneytonetzero.Threeleverscandeliverthischange.First,“energysavings”–operationalimprovementinterventionsfundedthroughoperatingexpenditure(OpEx).Resultsaretypicallyimmediatebutoftenoverlookedastheyrequirecoordinatingmanyinterventionsacrossanorganizationandconstantenergycostimprovement.“Energyef?ciency”poolsmeasuresunderdirectcompanycontrolthatrequirecapitalexpenditure(CapEx).Together,

savingsandef?cienciesofferbusinessesthelower-hangingfruitandatleasthalfoftheimprovementsinenergyintensitythatthisresearchhasidenti?ed.The?nalleveris“valuechaincollaboration”,whereworkingdirectlywithsuppliersandbusinesspartnersofferscompanyagencyoverenergyimpact,reducingcostandgettingaheadoftheracetonetzero.Findingawaytoreduceorevenreversethepaceofenergydemandgrowthwhilesupportingeconomicoutputiscritical.By2050,theworld’s

populationwillgrowbytwobillion,andGDPisforecasttodouble.Emergingmarketsanddevelopingeconomiesneedabundantandlow-costenergytoenablegrowthandmeetdevelopmentgoals.Simultaneously,theworldistargetingsupplydecarbonization.Actingondemandandsupplysimultaneouslyisthebestwaytoachievethesechanges.Eachsectorneedsa“roadmap”toguidecompanyandgovernmentaction.Companyandnationalenergytransitionplansareneededtocapturethebene?tsofmanagingenergyconsumptionwhileintegratingsupply-sideactions.Businessesacrosstheenergydemandandsupplyspectrumwillneedtoworktogetherwithgovernmenttodeveloptheseplans

and

increaseawarenessoftheroutesandresultsavailabletoaddressbarrierstoaction.Actingonenergyconsumptionisdoable,affordableandpro?table.Thisresearchshowsthatallcompaniesandcountriescanuseexistingleverstoreduceenergyintensity.Acrossbuildings,industryandtransport(BIT),InternationalBusinessCouncil(IBC)examplesillustratethattheseactions,wheresupportedbyappropriatepublicpolicy,canenabletheworldtoreduceitsenergyneedsbyapproximatelyathirdwhilefreeingfurtherDevelopingtheseplansistheessentialnextstepinraisingawarenessandgettingbehindactiononenergydemand.AtCOP28,over120countriespledgedtodoublethepaceofenergyef?ciencyimprovement.TheIBCcanbealeadingprivatesectorgrouptosupportcountriesintheirambition.TransformingEnergyDemand4Whytransforming1energydemandmattersActionsonenergydemandcanreduceenergyconsumptionbyupto31%,savingupto$2trillionperannum.Whatifabusinesscouldreduceitsannualoperatingcostsby10%withinthreeyears?Whatwouldbetheimplicationsforacompany’sstockpriceifitcouldincreasemarginsonasustainedbasisby200-300basispoints?Allwhilesimultaneouslybuildingbothmeasurableprogressonreducinggreenhousegas(GHG)emissionsanddeliveringgreaterresilienceinoperations.Thesearenottrickquestions,butarebasedonrealexamplesfromIBCmembers.Theanswerliesattherootofthisstudy:transformingenergydemand.FIGURE1

TheenergytriangleSustainabilityandclimatechangeEnablers:Policy,?nance,collaborationtechnology,digitalizationandworkforceEnergytransitionGeopoliticsTimeframeSupplyRenewableNuclearDeliveryTransmissionPipelinesDemandIndustryUrbanandbuildingsFossilfuelsInfrastructureTransportJustandaffordabilityEnergysecurityandresilienceEconomiesSource:WorldEconomicForum,FosteringEffectiveEnergyTransition,2023.Note:Thetrianglerepresentstheenergytrilemma–theimperativeofdeliveringajustenergytransitionwhileensuringaffordability,securityandsustainability.TransformingEnergyDemand5To

date,therehasbeentooTheproblemapproximately60%ofcurrentdemand.Thesemarketsneedaclearrangeofroutestoeconomicgrowth,whichincludeabundantaccesstoaffordableheavy

a

relianceon

governmentsandthe

energyindustry,

notthewider

economy,

todelivernetzero.Theenergytransitioncreates

immenseandgrowingtensionsbetweentheimperativesofsecurity,affordabilityandsustainability(seeFigure1).cleanenergy.

Ifthefuturelevelofenergydemandis3notmetbyadequatesupply,itcouldleadtohigherpricesandobstaclestogrowthandcompetitiveness.SecuritySustainabilityOnenergysecurity,the?rstchallengeistosimultaneouslymaintainasecureandstablesupplyofenergyamidanincreasinglyvolatilegeopoliticalsituation,allwhiletransformingtoday’shydrocarbon-dominated

supply.In2021-22,Europegrappledwithenergyshortagesandpricesthathavethreatened

theindustrialbaseandforcedgovernmentstoprocuretheiroilandgasfromthe?owsnormallydestinedtootheremergingmarketsThethirdchallenge,sustainability,istomeetthisgrowthinenergydemandinawaythatkeepstheworldontracktomeetthe2050ParisAgreement.Evenwithanassumedthree-foldgrowthinrenewableenergy,scenariosforecastasigni?cantshortfallincleanenergysupplyby2050(seeFigure3),whichcouldbemetwithmorefossilfuel-basedenergy.Thisisas,ifnotmore,trueinEMDE,duetothelackofadequaterenewablesupplychains.anddevelopingeconomies(EMDE),

whichin1turnhadtoresorttohighercoalconsumptionandoverallfacehigherenergyprices.To

date,themajorityofdebateandactionhasbeenfocusedongovernmentsandenergycompaniesdrivingchangesinenergysupply.Thishasresultedinremarkablechangesintheenergysystem,withrapidincreasesinemissions-freeanddecentralisedelectricitygeneration.However,

thetrajectoryoftheenergytransitionremainsoff-trackcomparedtoclimateanddevelopmentgoals,hinderedbyissuessuchasslowpermittingandpooraccessto?nance.Therefore,whileactiononenergysupplyremainscrucial,itwillbedif?cultforittobetheansweralone.AffordabilityThesecondchallenge,affordability,istoensurethatenergyiseconomicnotjustforbusinessesbutforsocietyingeneral.Whileforecastsdifferonthelevelofenergydemandin2050(seeFigure2),theexpecteddoublingofglobalgrossdomesticproduct(GDP)andtheadditionoftwobillionpeoplewillintensifypressureonenergysupplysystems,particularlyinEMDE,whichareresponsiblefor2FIGURE2

Forecastdemandgrowthto2050Percentagegrowthintotalenergyconsumptionacrossdifferingglobalscenarios(sample)%,baseyearto205033%21%14%14%9%8%8%-3%-22%Shell“Archipelago”(baseyear2019)SchneiderTotalEnergiesBP“Newmomentum”(baseyear2019)XOM“Global

Electric“New

“Momentum”outlook”(base

Normal”(baseyear2021)

year2018)Equinor“Walls”(baseyear2020)IEA“STEPS”(baseyear2022)IEA“NetZero”(baseyear2022)(baseyear2021)IEA“APS”(base2022)CurrentpoliciesFurtheractionSources:InternationalEnergyAgency(IEA),NetZeroRoadmap:AGlobalPathwaytoKeepthe1.5CGoalinReach,2023;Shell,TheEnergySecurityScenarios,2019;ExxonMobil,ExxonMobilGlobalOutlook,2023;SchneiderElectric,Backto2050:1.5°Cismorefeasiblethanwethink,2021;Equinor,

2023EnergyPerspectives,2023;bp,bpEnergyOutlook2023Edition,2023;IEA,WorldEnergyOutlook2023,2023;TotalEnergies,TotalEnergiesEnergyOutlook2022,2022.TransformingEnergyDemand6FIGURE3

ShortfallinrenewableenergysupplyvsdemandfromcommercialsourcesGlobalcommercial*total?nalconsumptionandrenewableenergysupplyandIEAstatedpolicies(STEPS)scenario,exajoules(EJ),2022-205075%42%SupplyshortfallSupplyshortfall3923042277520222050CommercialenergydemandRenewableenergysupply*Allenergydemandfromcommercialbuildings,industryandtransport,excludingresidentialbuildingsandroadtransport.Sources:IEA,WorldEnergyOutlook2023,2023.Thesolution:actiononenergyconsumptionalongsidesupplyItis,therefore,vitaltoaddressenergydemandalongsidesupply,reducingtheenergyintensityofcurrentactivityandfuturegrowth.Demand-sideactionisanareawherethebusinessandsocialcasesfordemand-sideactionoverlapclosely.Suchactioncanincreaseproductivity,whileunlockingaccesstoenergyandeconomicgrowth.Thisisdonebyreallocatingpreviouslywastedorunnecessarily-usedenergytonewconsumersand/ornewuses.Afterall,thecheapestformofenergyisenergythatisnotused.There’s

alsoaclearopportunitycost–anydelayinactionwillforceincreasedenergyspendingandcontinuedmissingofclimategoals.usinglessenergytocreatethesame(orgreater)output.Thisinturnwillreduceemissionsintensity(thevolumeofemissionscreatedinmanufacturingaproductorprovidingaservice)duetoenergy-relatedemissionsbeingreduced.Measurestotackleenergyconsumptionarealsobene?cialacrossallmarkets,asdeliveringhigheroutputwithlowerenergyuseisauniversalgood.However,bene?tswillvaryinimportancebetweenmarkets.Forexample,indevelopedeconomies,lowerenergyintensityhelpstoenhancecompetitivenessthroughlowertotalenergycostwhileattenuatingenvironmentalrisks.InEMDE,takingactiontomanageenergydemandaswellasfocusingonthesupplycanimproveaccesstosecureenergy,improvingtheabilitytoattractinvestmentwhileofferingtheopportunitytoavoidlow-ef?ciencylegacysystemsseenindevelopedeconomies.Thegreatnewsisthattransformingenergydemandisdoableandaffordablenow.

Allcompanies,regardlessofsector,

cantapintoexisting,affordabletechnologiestoreduceenergyintensity–thatis,TransformingEnergyDemand7SizeoftheenergydemandprizeThisstudybreaksglobalenergydemandinto“BITs”

–buildings,industryandtransport.Together,acrosstheseareasthatwouldreduceoverallenergyintensitybyaround31%relativetocurrentlevels(seeFigure4),withfurther,

harder-to-deliverinterventionsincreasingthisto42%(seeFigure6).theseaccountfor94%ofglobaldemand.Achievable

interventionshavebeenidenti?ed45FIGURE4

Short-termreductionpotentialofenergydemandactions(achievablescenarioonly)1Potentialenergyintensityreductionbyvertical(achievable*)22022globalenergydemandbyvertical3Potentialenergyintensityreductionforthewholeeconomy(achievable*)442EJ31%6%Other38%4%Other26%Transport5%Transport29%21%30%Buildings12%Buildings38%Industry11%IndustryIndustryBuildingsTransport2022demand–In(1),individualinterventionsbyverticalareidenti?ed(e.g.installingmoreef?cientelectricmotors),andtheirpotentialimpactonvertical-wideenergyintensityissummed.–To

gaintheoverallimpactofthesechangesonglobaldemand,thesearethenscaledbytheproportionofenergydemandthateachverticalrepresents(2).Inaddition,anaverageintensityreductionisappliedtosectorsnotconsideredindepth(de?nedas“other”)–Thisresultsin(3),thepotentialcombinedimpactofindividualinterventionsonglobalenergyintensity.*Achievableisde?nedasinterventionsthatarecurrentlytechnologicallyavailableatscalewithassociateddataavailableontheirenergyintensityimpact;**Percentagedoesnottotal31%duetorounding.Sources:IEA,WorldEnergyOutlook2023,2023.To

understandhowtheseinterventionswouldaffecttheworldovertime,thisreportconsiderswhatwouldoccuriftheseinterventionsweregloballyenactedby2030(seeAppendix,A1:Methodology).Thiswasachievedby?rstmodellingenergydemandin2030ifnoenergyintensityimprovementweremadebetween2022and2030(“noef?ciency”scenario,seeFigure5).TransformingEnergyDemand8FIGURE5

Forecastof“noef?ciency”scenario,2030EJ,2022-2030,global+30%1315744422022energyconsumptionImpactofmakingnoenergyef?ciencyprogress2030“noef?ciency”scenario2022energydemand:Total

energyconsumed,2022Impactofmakingnoenergyef?ciencyprogress2030“noef?ciency”scenario:Forecast2030energydemandifnofurtheref?ciencygainsaremadeSource:IEA,WorldEnergyOutlook2023,2023.If

appliedto

the“no

ef?ciency”

scenario

in

2030,

theseinterventions

would

allow

output

to

be

maintained

withless

energy,

resulting

in

a

reduction

in

energy

intensityaround

19%

below

thelevelsforecast

if

currentpoliciesare

enacted(seeFigure

6).

On

an

annualbasis,

this

would

correspondto

an

improvementin

energy

intensity

of

4.6%

per

annum.

Such

gainsare

ahead

of

thetarget

set

by

theSustainableDevelopment

Goals

(SDGs),

theInternational

EnergyAgency

(IEA)

and

theInternational

Renewable

EnergyAgency

(IRENA)

of

doublingthecurrent

rate

to

over4%

to

reach

net

zero.

As

a

result,

if

delivered,

theseinterventions

would

put

the

world

ahead

of

thetargets

in

the

Paris

Agreements.FIGURE6

Impactofproposedinterventionsonglobalenergydemand,20306EJ,2030,global-31%-19%-42%Impactofachievableinterventionsvs“noef?ciency”Impactofambitioninterventionsvs“noef?ciency”574482406393331“Noef?ciency”scenario2023“currentpolicies”scenario2030net-zeroscenario2030achievableenergydemand*2030ambitionenergydemandForecastenergydemandin2030ifhistoricalrateofenergyef?ciencyimprovementismaintainedNetzeroscenarioforecastin2030

Forecastenergydemandifallachievableandallambitioninterventionsareputinplaceby2030Forecastenergydemandifallachievableinterventionsareputinplaceby2030*Achievable”scenariorepresentsdif?cultstepstoimplementthatwillreduceenergyintensity,butthatarebasedontechnologiesthatareavailableatscaletoday,makingthemtechnicallyachievable.“Ambition”scenariorepresentstheimpactofallachievableinterventionsalongsidesomelessproven,moredif?culttoscaleinterventions.Source:IEA,WorldEnergyOutlook2023,2023.TransformingEnergyDemand9Evenwiththeenergynumbersbeingsocompelling,theseinterventionswouldhavetobeaffordable.Again,actingonenergydemandoffersgoodnews,suggestingaclearrangeofrouteswhichcomeatafractionofthelong-termcapitalexpenditureneededtoswitchenergysupplyawayfromcumulativecostofenergyef?ciencyinterventionsby2030toreachnetzeroat$14trillion,

this7studysuggeststhat,ofthis,upto$8trillionisrepaidduringtheperiod,withfurtherannualsavingsofupto$2trillionperannumatcurrentprices,dependingonhowenergypricingvariesinresponsetointensityreduction(seeFigure7).fossilfuel.WhilearecentreportbyIRENAputstheFIGURE7

Impactofenergydemand-sideleversonglobalenergydemandandillustrativeassociatedcostimpacts,2022-30GlobalenergydemandforecastscenariosandassociatedcostreductionsEJ,global490480470460450440430420410400390380370360350340330Currentpoliciesscenario219%$0.9trillionadditionalspendandapproximately3,000additionalpowerstationsif1Combined$2trillionsavingsvsforecastspendundercurrentpoliciesareenactedwithnofurtheractionondemandcurrentpolicies2022demand$1.1trillioninenergysavings2022demand1comparedtoAchievableenergydemand$2.5trillioninenergysavings1comparedto2022demandAmbitionenergydemand10020222030Notes:1Assumescurrentaveragepriceperjouletostayconstant.Thisisillustrativeandtoquantifythetheoreticalsizeoftheprizebasedoncurrentspending.Actual?gurewouldvarydependingonresponseofenergypricestoreductionindemand,andchangesinoverallenergysystemsandtheirfuelmixes.;

2IEASTEPSscenarioSource:IEASTEPSscenarioWhilesupply-sideinterventionsremain

crucial,interventionsonenergyconsumptionareeffectively

self-fundingduringtheperiod,canbepaidbackwithinthedecadeandembedlong-termef?ciency

allwhileshiftingtheworld’s

abilitytodelivertheParisAgreement.Indevelopingtheseconclusions,aglobalsurveywasconducted,whichinvolvedcontributionsfromthe120membersoftheWorldEconomicForum’sInternationalBusinessCouncil(IBC),agroupofmultinationalcompaniesrepresentingabout3%ofglobalenergydemandfromtheirdirectoperations.Thesurveyaimedtounderstandthecurrent

rolethatcompaniesareplayingintheenergytransition,whatispreventingfurtheractionandhowtheseissuescanbeovercome.Inaddition,memberinterviewswereconductedtoidentifyexamplesofreplicableenergyconsumption-focusedmeasures.Theresultsoftheseinteractionsarecapturesintherecommendationsthroughouttheremainderofthisreport.To

helporganizationspursuethisprize,thisreportidenti?estheopportunitiesandthebarrierstoadoption,highlightingtheleversthatwillhelpcompaniesreduceintensity,anddevelopingsuggestedroutestofollowtodeliverthesechanges.Mostoftheseinterventionscanbedeployednow,drivingsigni?cantimprovementsinlessthanayear.TransformingEnergyDemand

10Thethree

energydemandlevers2Thereare

threeexisting,deliverableleverstoreduceenergyintensity,butthesefacechallengesthatlimituptake.FIGURE8

ThreeleversenergydemandleversMedianenergyintensityimpactLeverDescriptionCasestudyLowercomplexity/shorterEnergysavingInterventionstosaveenergybychangingacompany’s

ongoingcorebehavioursandactivities,primarilyOpExfundedwithshort-termpaybackAround–AI-drivensoftwaretocontrolexistingHVAC

systems10

%payback–ReducesHVAC

energyintensityby20-25%,paybackoflessthan1year123Energyef?ciencyUsinglessenergytoperformAround–Retrofittingbuildingsusingsmartproducts,lighting,improvedHVACpaybackbyinvestingincore

30%thesametask,typicallyfunded1byCapExwithmedium-term–Reducedenergyrequiredfornon-industrialsectoroperationsby27%businessprocesses–Paybacklessthan15years2Value

chaincollaborationScalable,replicablepartnershipswithadjacentsupplychainstoachieveenergyandemissionsintensityimprovementsthroughdemandsubstitution,demandconsolidationand?exibledemandresponseAround–Swedishsulphuricacidplantsupplyingenergytourbandistrictheating45%–Reducedcity’s

heatingenergyintensityby25%Highercomplexity/longer–Lessthan1-yearpaybackpaybackNote:Impactde?nedaspercentagedecreaseinenergyintensityofagivenprocess–e.g.?ttingLEDlightscanreduceenergyintensityoflightingdemandby75%–notthepercentagedecreaseinacompany’s

overallenergyintensity1Whileenergyef?ciencyisawidelyusedandunderstoodterm,hereitisde?nedinthesenseofaparticularinterventiontype(i.e.CapEx-ledwaystouselessenergytoperformthesametask).Itthereforeisdifferentfrom“energyintensity”andcommonuseof“energyef?ciency”inthiscontext.

2ThisexampleisfromAramco’s

LeadbyExampleprogramme.Seeonlinecasestudies:/energy-and-industry-transition-intelligence/transforming-energy-demandLevers1and2offerimmediatevalue.Savingsandef?ciencyinterventionscandeliverareductioninprocessintensityofupto90%withnoneedtoreplacechangeswithinnovationintechnology,regulationorexternalfunding.Electri?cationisakeyvectorforthis,oftendrivinglowerenergyintensityinexistingprocessespurelythroughinherentlowerlevelsofwastagecomparedtocombustion-basedalternatives.Progresscanbedrivenevenfurtherthroughafocusonrepeatedapplicationoftheseleverswithacultureofcontinuousimprovement.Whileeachindividualactionmaybesmall,theycancompoundtodrivemajorchangesinintensityovertime(seecasestudy1).Thethirdlever,

collaboration,showshowcompaniescancreatenewvaluepoolsandrevenuestreamsbycollaboratingwithadjacentsupplychainsandthepublicsector.

Thismustbedoneinconcertwithenergysuppliersandwitha

long-termviewtoTransformingEnergyDemand

11ensure

future-proofchange.Ratherthanwaitingfortheenergysupply-sideto?xitself,companiesfromallsectorscanbecomeactiveparticipantsintheenergytransition.andgrid“wheeling”tocreateutility-scalesolarfarms.Withlocalbanksupportandmining?rmguarantees,theyachievedrapidgrid-scalepowerdeploymentin18months,fasterthanseeninmostothercountriesandasigni?cantachievementgiventhecountry’s

unstablecoal-basedenergysupply.Anexampleofthisleverisenergydemandconsolidation–wherecompaniesand/orotherpartiescollaborate(e.g.inanindustrialcluster)todrivechangesinenergyintensity,suchasthroughdistrictheating(seeFigure8),orlonger-termthroughthedesignofcircularbusinessmodels.Businessescanalsocollaboratetoachievesupplysubstitution–usingtheirenergydemand,inconcertwith?nanciers,energycompaniesandgovernment,tochangetheirenergyandemissionsintensity.InSouthAfrica,AfricanRainbowMineralsandotherminingcompaniespartneredwithrenewabledevelopers,usingofftakecontractsCollaborationcanalsoenable?exibledemandresponse–wherecompaniescollaboratewiththeirpowerproviderandgovernmenttoadaptoperationsbasedondemandandpricesignals.Thisincludesreducingoperationsatpeaktimesandinstallingenergygenerationorbattery

storageto

enable?exibleenergy

usage.

While

demand

response

predominantlyimprovesemissionsintensity(asfossilfuelsarecommonlyusedattimesofhighdemand),itcanalsoimprovethegrid’s

ef?ciencyandeffectiveness.8Thechallenges:growingawarenessanddevelopinganenablingpolicyenvironmentWhiletheeconomicandbusinesscaseisclear,therearethreesigni?cantbarriers:bymanydifferentactorswithinanorganization.42%ofboardsdiscussenergyintensityvs82%forcarbonintensity1.

LowawarenessSincemostinterventions–changinglightbulbsinonelocation,installingnewmotorsinanother

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論