2022-2023學(xué)年浙江省紹興蕺山外國語學(xué)校數(shù)學(xué)九年級上冊期末考試試題含解析_第1頁
2022-2023學(xué)年浙江省紹興蕺山外國語學(xué)校數(shù)學(xué)九年級上冊期末考試試題含解析_第2頁
2022-2023學(xué)年浙江省紹興蕺山外國語學(xué)校數(shù)學(xué)九年級上冊期末考試試題含解析_第3頁
2022-2023學(xué)年浙江省紹興蕺山外國語學(xué)校數(shù)學(xué)九年級上冊期末考試試題含解析_第4頁
2022-2023學(xué)年浙江省紹興蕺山外國語學(xué)校數(shù)學(xué)九年級上冊期末考試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷

請考生注意:

1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答

案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。

2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。

一、選擇題(每題4分,共48分)

1.若函數(shù))=("-1)好一4x+2a的圖象與x軸有且只有一個交點,則a的值為().

A.-1或2B.-1或1

C.1或2D.-1或2或1

2.如圖,在正方形網(wǎng)格上有兩個相似三角形△ABC和△OEE則/區(qū)4c的度數(shù)為()

A.x+—=0B.ax2+bx+c=0C.x2+l=0D.x-y-1=0

x

4.某村引進(jìn)甲乙兩種水稻良種,各選6塊條件相同的實驗田,同時播種并核定畝產(chǎn),結(jié)果甲、乙兩種水稻的平均產(chǎn)量

均為550kg/畝,方差分別為S/=14L7,S乙2=433.3,則產(chǎn)量穩(wěn)定,適合推廣的品種為:()

A.甲、乙均可B.甲C.乙D.無法確定

5.已知一個扇形的弧長為所含的圓心角為120。,則半徑為()

93^2

A.9B.3C.-D.二―

22

3

6.若點A(-7,yi),B(-4,y2),C(5,y3)在反比例函數(shù)y=—的圖象上,則yi,yi,y3的大小關(guān)系是()

x

A.yi<y3<y2B.y2<yi<yaC.y3<yi<yiD.yi<y2<ys

7.如圖,Rt^ABC中,AB=9,BC=6,NB=90。,將4ABC折疊,使A點與BC的中點D重合,折痕為PQ,則

△PQD的面積為()

A.—V13B.—C.-V37D.—

32211

8.有甲、乙、丙、丁四架機床生產(chǎn)一種直徑為20mm圓柱形零件,從各自生產(chǎn)的零件中任意抽取10件進(jìn)行檢測,得

出各自的平均直徑均為20mm,每架機床生產(chǎn)的零件的方差如表:

機床型號甲乙丙丁

方差mm20.0120.0200.0150.102

則在這四臺機床中生產(chǎn)的零件最穩(wěn)定的是().

A.甲B.乙C.丙D.丁

9.如果兩個相似三角形的相似比是1:2,那么它們的面積比是()

A.1:2B.1:4C.1:0D.2:1

10.下圖中①表示的是組合在一起的模塊,在②③④⑤四個圖形中,是這個模塊的俯視圖的是()

x_5

2552y5y

12.若關(guān)于的一元二次方程近?+2x-1=0有兩個不相等的實數(shù)根,則k的取值范圍是()

A.k>-\B.左>—1且左WOC.k<\D.左<1且左

二、填空題(每題4分,共24分)

13.如圖,反比例函數(shù)y=K(x<0)的圖像過點4(—2,2),過點A作,y軸于點3,直線/:y=x+。垂直線段。4

于點P,點3關(guān)于直線/的對稱點8,恰好在反比例函數(shù)的圖象上,則力的值是.

14.如圖,直線a//b//c,若歿=工,則匹的值為_______

BC2DF

15.若二次根式J工斤有意義,則x的取值范圍是A.

16.用配方法解方程x2-2x-6=0,原方程可化為.

17.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.

18.二次函數(shù)y=*2-5x+c的圖象上有兩點A(3,-2),5(-9,-2),則此拋物線的對稱軸是直線x=

三、解答題(共78分)

19.(8分)解下列兩題:

.a342a+36乩?

(1)已知7=:,求-------的值;

b4a

(2)已知a為銳角,且20sina=4cos30°-tan60°,求a的度數(shù).

3k

20.(8分)如圖,已知一次函數(shù)y=—x-3與反比例函數(shù)y=—的圖象相交于點4(42),與x軸相交于點心

2x

(1)填空:〃的值為,左的值為;

(2)以A3為邊作菱形ABC。,使點。在x軸正半軸上,點。在第一象限,求點。的坐標(biāo);

21.(8分)因2019年下半年豬肉大漲,某養(yǎng)豬專業(yè)戶想擴大養(yǎng)豬場地,但為了節(jié)省材料,利用一面墻(墻足夠長)

為一邊,用總長為120m的材料圍成了如圖所示①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,設(shè)的長

度為x(m),矩形區(qū)域ABC。的面積S(蘇).

(1)求S與X之間的函數(shù)表達(dá)式,并注明自變量X的取值范圍.

(2)當(dāng)x為何值時,S有最大值?最大值是多少?

22.(10分)據(jù)某省商務(wù)廳最新消息,2018年第一季度該省企業(yè)對“一帶一路”沿線國家的投資額為10億美元,第三

季度的投資額增加到了14.4億美元.求該省第二、三季度投資額的平均增長率.

23.(10分)如圖,在菱形ABCD中,點E在對角線AC上,延長助交AO于點尸.

EFFA

(1)求證:

EB~BC

(2)已知點P在邊CD上,請以CP為邊,用尺規(guī)作一個。Q與AEF相似,并使得點。在AC上.(只須作出一

個一CPQ,保留作圖痕跡,不寫作法)

24.(10分)如圖,在ABC中,ZC=90°,AC=3,AB=5,點尸從點C出發(fā)沿C4以每秒1個單位長的速度向點A

勻速運動;點。從點A出發(fā)沿A3以每秒1個單位長的速度向點3勻速運動.伴隨著P、。的運動,OE始終保持垂直

平分PQ,且交尸。于點O,交BC于點E.點P、。同時出發(fā),當(dāng)點尸到達(dá)點A時停止運動,點。也隨之停止.設(shè)點

P、。運動的時間是f秒(>0).

(1)當(dāng)f為何值時,DE//AB2

(2)求四邊形BQPC的面積S與,的函數(shù)關(guān)系式;

(3)是否存在某一時刻f,使四邊形8QPC的面積與ABC的面積比為13:15?若存在,求f的值.若不存在,請

說明理由;

(4)若OE經(jīng)過點C,試求f的值.

B

25.(12分)小明、小林是景山中學(xué)九年級的同班同學(xué),在六月份舉行的招生考試中,他倆都被亭湖高級中學(xué)錄取,

并將被編入A、B、C三個班,他倆希望編班時分在不同班.

(1)請你用畫樹狀圖法或列舉法,列出所有可能的結(jié)果;

(2)求兩人不在同班的概率.

26.某數(shù)學(xué)小組在郊外的水平空地上對無人機進(jìn)行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均

為1米(即AD=5E=1米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C(點C與點A、B在

同一平面內(nèi)),A處測得其仰角為30。,B處測得其仰角為45°.(參考數(shù)據(jù):0《1.41,6=1.73,sin40土0.64,

cos40a0.77,tan40a0.84)

(1)求該時刻無人機的離地高度;(單位:米,結(jié)果保留整數(shù))

(2)無人機沿水平方向向左飛行2秒后到達(dá)點F(點F與點A、B、C在同一平面內(nèi)),此時于A處測得無人機的仰

角為40。,求無人機水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))

參考答案

、選擇題(每題4分,共48分)

1、D

【解析】當(dāng)該函數(shù)是一次函數(shù)時,與X軸必有一個交點,此時a—1=0,即a=L

當(dāng)該函數(shù)是二次函數(shù)時,由圖象與x軸只有一個交點可知A=(一4尸一4(a—l)x2a=0,解得

al=—1,a2=2.

綜上所述,a=l或一1或2.

故選D.

2、D

【分析】根據(jù)相似三角形的對應(yīng)角相等即可得出.

【詳解】':/\ABC^/\EDF,

:.NBAC=ZDEF,

又;NOEF=90°+45°=135°,

:.ZBAC^135°,

故選:D.

【點睛】

本題考查相似三角形的性質(zhì),解題的關(guān)鍵是找到對應(yīng)角

3、C

【解析】一元二次方程必須滿足兩個條件:

(1)未知數(shù)的最高次數(shù)是2;

(2)二次項系數(shù)不為1.

【詳解】4該方程不是整式方程,故本選項不符合題意.

氏當(dāng)。=1時,該方程不是關(guān)于x的一元二次方程,故本選項不符合題意.

C.該方程符合一元二次方程的定義,故本選項不符合題意.

。.該方程中含有兩個未知數(shù),屬于二元一次方程,故本選項不符合題意.

故選:C.

【點睛】

本題考查了一元二次方程的性質(zhì)和判定,掌握一元二次方程必須滿足的條件是解題的關(guān)鍵.

4、B

【解析】試題分析:這是數(shù)據(jù)統(tǒng)計與分析中的方差意義的理解,平均數(shù)相同時,方差越小越穩(wěn)定,因此可知推廣的品

種為甲.

答案為B

考點:方差

5、C

【分析】根據(jù)弧長的公式進(jìn)行計算即可.

【詳解】解:設(shè)半徑為r,

,扇形的弧長為3兀,所含的圓心角為120。,

120?萬xr

??=37t,

180

9

;.r=—,

2

故選:C.

【點睛】

此題考查的是根據(jù)弧長和圓心角求半徑,掌握弧長公式是解決此題的關(guān)鍵.

6、B

【分析】根據(jù)反比例函數(shù)的性質(zhì)可以判斷yi,y2,y3的大小,從而可以解答本題.

3

【詳解】解:,??點A(-7,yi),B(-4,y),C(5,y)在反比例函數(shù)y=一的圖象上,k=3>0,

23x

...該函數(shù)在每個象限內(nèi),y隨x的增大而減小,函數(shù)圖象在第一、三象限,

V-7<-4,0<5,

???y2〈yiV0Vy3,

即y2<yi<y3>

故選:B.

【點睛】

本題考查反比例函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.

7、D

【分析】由折疊的性質(zhì)可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,

即可求解.

【詳解】解:過點D作DN_LAC于N,

:點D是BC中點,

;.BD=3,

:將△ABC折疊,

,\AQ=QD,AP=PD,

VAB=9,BC=6,ZB=90°,

???AC=7AB2+BC2=/81+36=3A/13,

DNAB_9

VsinZC=

CD-AC-3^

ADN

13

CNBC_6

VcosZC=

AC-3A/13

二?CN邛

.?.AN=S

13

,.?PD2=PN2+DN2,

辿1一AP)2+迎,

1313

…」5房

??z\>-------,

11

VQD2=DB2+QB2,

;.AQ2=(9-AQ)2+9,

.\AQ=5,

.HQBC

,SmZA=

AQAC

.Hn_lrl_ioVT3

..吁3而一工

;APQD的面積=4APQ的面積=4X吆叵x臣叵=—,

2131111

故選:D.

【點睛】

本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關(guān)鍵.

8、A

【分析】根據(jù)方差的意義,找出方差最小的即可.

【詳解】???這四臺機床的平均數(shù)相同,甲機床的方差是0.012,方差最小

在這四臺機床中生產(chǎn)的零件最穩(wěn)定的是甲;

故選:A.

【點睛】

本題考查了方差和平均數(shù)的知識;解題的關(guān)鍵是熟練掌握方差的性質(zhì),從而完成求解.

9、B

【分析】根據(jù)相似三角形面積的比等于相似比的平方即可得出.

【詳解】???兩個相似三角形的相似比是1:2,

.?.它們的面積比是1:1.

故選B.

【點睛】

本題是一道考查相似三角形性質(zhì)的基本題目,比較簡單.

10、A

【詳解】②是該幾何體的俯視圖;③是該幾何體的左視圖和主視圖;④、⑤不是該幾何體的三視圖.

故選A.

【點睛】

從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的

線畫虛線.

11、B

【解析】試題解析:;2x=5y,

52'

故選B.

12、B

【分析】根據(jù)一元二次方程的定義和根的判別式列出不等式求解即可.

【詳解】由題意得:左wO,A=/—4ac=4+4人>0

解得:左>—1且左w0

故選:B.

【點睛】

本題考查了一元二次方程的根的判別式,熟記根的判別式是解題關(guān)鍵.對于一般形式以2+初^+。=09/0)有:(1)

當(dāng)A=〃-4ac>0時,方程有兩個不相等的實數(shù)根;(2)當(dāng)A=^—土紀(jì)=0時,方程有兩個相等的實數(shù)根;(3)當(dāng)

/=〃—4ac<0時,方程沒有實數(shù)根.

二、填空題(每題4分,共24分)

13、1+/

【分析】設(shè)直線1與y軸交于點M,點3關(guān)于直線/的對稱點8,,連接MB,,根據(jù)一次函數(shù)解析式確定NPMO=45°

及M點坐標(biāo),然后根據(jù)A點坐標(biāo)分析B點坐標(biāo),MB的長度,利用對稱性分析B,的坐標(biāo),利用待定系數(shù)法求反比例函

數(shù)解析式,然后將夕坐標(biāo)代入解析式,從而求解.

【詳解】解:直線1與y軸交于點M,點B關(guān)于直線/的對稱點8',連接MB,

由直線/:y=x+6中k=l可知直線1與x軸的夾角為45°,

/.ZPMO=45O,M(0,b)

由4(—2,2),過點A作A3,y軸于點3

AB(0,2),MB=b-2

,*.B,(2-b,b)

把點A(—2,2)代入y=&(x<0)中

解得:k=-4

4

??y——

x

???8’恰好在反比例函數(shù)的圖象上

4

把B'(2-b,b)代入y=-一中

X

(2-b)b=-4

解得:b=l+45(負(fù)值舍去)

:.b=\+也

故答案為:1+小

【點睛】

本題考查了待定系數(shù)法求反比例函數(shù)、正比例函數(shù)的解析式,軸對稱的性質(zhì),函數(shù)圖象上點的坐標(biāo)特征,用含b的代

數(shù)式表示B,點坐標(biāo)是解題的關(guān)鍵.

1

14、-

3

4R14R1

【解析】先由0=彳得出下=;;,再根據(jù)平行線分線段成比例定理即可得到結(jié)論.

BC2AC3

AB1

【詳解】V—=-,

BC2

.-1

??——9

AC3

".,a//b//c,

?DE_—_A__B___1

"DF~AC~3'

故答案為:—.

3

【點睛】

本題考查了平行線分線段成比例定理,掌握三條平行線截兩條直線,所得的對應(yīng)線段成比例是解題的關(guān)鍵.

15、x>l.

【分析】根據(jù)二次根式有意義的條件:被開方數(shù)大于等于0列出不等式求解.

【詳解】根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)的條件,得x-INOnxNl.

【點睛】

本題考查二次根式有意義的條件,牢記被開方數(shù)必須是非負(fù)數(shù).

16、(x-1)2=1

【分析】方程常數(shù)項移到右邊,兩邊加上1變形后,即可得到結(jié)果.

【詳解】解:方程變形得:X2-2X=6,

配方得:X2-2X+1—1,即(X-1)2=1.

故答案為:(X-1)2=1.

【點睛】

本題考查了配方法求解方程,屬于簡單題,熟悉配方的方法是解題關(guān)鍵.

17、1.

【詳解】;AB=5,AD=12,

.?.根據(jù)矩形的性質(zhì)和勾股定理,得AC=13.

,:BO為RtAABC斜邊上的中線

;.BO=6.5

是AC的中點,M是AD的中點,

/.OM是AACD的中位線

,OM=2.5

二四邊形ABOM的周長為:6.5+25+6+5=1

故答案為1

18、-3

【分析】觀察A(3,-2),B(-9,-2)兩點坐標(biāo)特征,縱坐標(biāo)相等,可知A,B兩點關(guān)于拋物線對稱軸對稱,對稱

軸為經(jīng)過線段AB中點且平行于y軸的直線.

【詳解】解:;A(3,-2),B(-9,-2)兩點縱坐標(biāo)相等,

.*.A,B兩點關(guān)于對稱軸對稱,

根據(jù)中點坐標(biāo)公式可得線段AB的中點坐標(biāo)為(-3,-2),

...拋物線的對稱軸是直線x=-3.

【點睛】

本題考查二次函數(shù)圖象的對稱性及對稱軸的求法,常見確定對稱軸的方法有,已知解析式則利用公式法確定對稱軸,

已知對稱點利用對稱性確定對稱軸,根據(jù)條件確定合適的方法求對稱軸是解答此題的關(guān)鍵.

三、解答題(共78分)

19、(1)6;⑵銳角a=30°

【分析】(1)根據(jù)等式:=—,設(shè)a=3?,b=4k,代入所求代數(shù)式化簡求值即可;

b4

(2)由cos3(T=且,tan60*G,化簡即可得出sina的值,根據(jù)特殊角的三角函數(shù)值即可得.

2

【詳解】解:(1)???£=』,

b4

:.設(shè)a=3k,b=4k,

2a+3b6k+12k

:.----------=-------------=6,

a3k

故答案為:6;

(2)V2y/3sina=4cos30°-tan60°=4x-^3二6,

2

1

:.sina=—,

2

???銳角a=30°,

故答案為:30°.

【點睛】

本題考查了化簡求值,特殊角的三角函數(shù)值的應(yīng)用,掌握化簡求值的計算是解題的關(guān)鍵.

20、(1)3,12;(2)D的坐標(biāo)為(4+JR,3)

3k

【分析】(1)把點A(4,n)代入一次函數(shù)y=—x-3,得到n的值為3;再把點A(4,3)代入反比例函數(shù)丁=—,得

2x

到k的值為12;

(2)根據(jù)坐標(biāo)軸上點的坐標(biāo)特征可得點B的坐標(biāo)為(2,0),過點A作AELx軸,垂足為E,過點D作DFJ_x軸,

垂足為F,根據(jù)勾股定理得到AB="5,根據(jù)AAS可得AABE之4DCF,根據(jù)菱形的性質(zhì)和全等三角形的性質(zhì)可得

點D的坐標(biāo).

33

【詳解】(1)把點4(4,〃)代入一次函數(shù).y=QX—3,可得〃=QX4—3=3;

把點4(4,3)代入反比例函數(shù)y=£可得3=4,

x4

解得k=T2.

3

(2)?.?一次函數(shù)丁=5》—3與x軸相交于點B,

3_

由一x—3=0,解得x=2,

2

.?.點B的坐標(biāo)為(2,0)

如圖,過點A作AELx軸,垂足為E,

過點D作。軸,垂足為F,

VA(4,3),B(2,0)

/.OE=4,AE=3,OB=2,

:.BE=OE-OB=4-2=2

在RTVLBE中,AB=\lAE2+BE2=A/32+22=A/13-

?.?四邊形ABCD是菱形,

:.AB=CD=BC=A/13,ABHCD,

:.ZABE=NDCF.

AE_Lx軸,DF_Lx軸,

:./AEB=/DFC=90°.

在AABE與ADCF中,ZAEB=ZDFC,ZABE=ZDCF,AB=CD,

AAABE=ADCF,

.?.CF=BE=2,DF=AE=3,

AOF=OB+BC+CF=2+713+2=4+^.

.??點D的坐標(biāo)為(4+Ji3,3)

【點睛】

本題考查了反比例函數(shù)與幾何圖形的綜合,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.

一一3,

21、(1)S=45%—x(0<x<60);(2)x=30時,S有最大值675加?

4

【分析】(1)根據(jù)題意三個區(qū)域面積直接求S與%之間的函數(shù)表達(dá)式,并根據(jù)表示自變量x的取值范圍即可;

(2)由題意對S與x之間的函數(shù)表達(dá)式進(jìn)行配方,即可求S的最大值.

XY

【詳解】解:(D假設(shè)。歹為。,由題意三個區(qū)域面積相等可得GF=GE=—,區(qū)域上區(qū)域2,面積法a?一=CF?x,

22

nx

得CT=巴,由總長為120m,故4a+2x=120,得a=30—土.

22

333

所以DC=—a=45——x,面積S=45x——%2(0<x<60)

244

33

(2)S=45%—x2=—(%—30)'+675(0<x<60),所以當(dāng)x=30時,S=675為最大值.

44

【點睛】

本題考查二次函數(shù)的性質(zhì)在實際生活中的應(yīng)用.最大值的問題常利用函數(shù)的增減性來解答.

22、第二、三季度的平均增長率為20%.

【解析】設(shè)增長率為x,則第二季度的投資額為10(1+x)萬元,第三季度的投資額為10(1+x)2萬元,由第三季度

投資額為10(1+x)2=14.4萬元建立方程求出其解即可.

【詳解】設(shè)該省第二、三季度投資額的平均增長率為x,由題意,得:

10(1+x)2=14.4,

解得:*1=0.2=20%,X2—~2.2(舍去).

答:第二、三季度的平均增長率為20%.

【點睛】

本題考查了增長率問題的數(shù)量關(guān)系的運用,一元二次方程的解法的運用,解答時根據(jù)第三季度投資額為10(1+x)2=

14.4建立方程是關(guān)鍵.

23、(1)詳見解析;(2)詳見解析;

【分析】(1)根據(jù)菱形的性質(zhì)可得:AD//BC,再根據(jù)相似三角形的判定即可證出△AE/S^CEB,從而得出結(jié)論;

(2)根據(jù)菱形的性質(zhì),可得DA=DC,從而得出NDAC=NDCA,可得只需做NCPQ=NAEF或NCPQ=/AFE,即

可得出CPQ與AEF相似,然后用尺規(guī)作圖作NCPQ=NAEF或NCPQ=NAFE即可.

【詳解】解:(1)???四邊形ABC。是菱形,

AD//BC.

:.△AEF—ACEB.

.EFFA

(2)1?四邊形ABC。是菱形

.\DA=DC

/.ZDAC=ZDCA

只需做/CPQ=NAEF或NCPQ=NAFE,即可得出<7Q與‘AER相似,

尺規(guī)作圖如圖所示:

①作NCPQ=NAEF,步驟為:以點E為圓心,以任意長度為半徑,作弧,交EA和EF于點G、H,以P為圓心,以

相同長度為半徑作弧,交CP于點M,以M為圓心,以GH的長為半徑作弧,兩弧交于點N,連接PN并延長,交

AC于Q,一CPQ就是所求作的三角形;

②作NCPQ=NAFE,作法同上;

.??-CPQ就是所求作的三角形(兩種情況任選其一即可).

【點睛】

此題考查的是菱形的性質(zhì)、相似三角形的判定及性質(zhì)和尺規(guī)作圖,掌握菱形的性質(zhì)、相似三角形的判定定理及性質(zhì)定

理和用尺規(guī)作圖作角等于已知角是解決此題的關(guān)鍵.

24(1)t=—;(2)S=—1~。+6(0</<3);(3)1或2;(4)—.

8552

【分析】(1)先根據(jù)可得NPQA=90。,再根據(jù)相似三角形的判定可得VAPQ:NABC,然后利用相似三

角形的性質(zhì)即可得;

(2)如圖(見解析),先利用正弦三角函數(shù)求出RQ的長,再根據(jù)S=SR,ABC-S.”0即可得S與f的函數(shù)關(guān)系式,然

后根據(jù)運動路程和速度求出t的取值范圍即可得;

(3)先根據(jù)面積比可求出S的值,從而可得一個關(guān)于t的一元二次方程,再解方程即可得;

(4)如圖(見解析),先根據(jù)相似三角形的判定與性質(zhì)可得g=嬰=嬰,從而可得3"="=與出,

BCACAB55

4/

再根據(jù)線段的和差可得C”=不,然后根據(jù)垂直平分線的性質(zhì)可得CQ=PC=f,最后在中,利用勾股定

理即可得.

【詳解】(1)由題意得:PC=t,AQ^t,

AC=3,AB=5,

AP=AC-3—t,BQ=AB—AQ=5—t,

DE//AB,DE垂直平分PQ,

:.AB±PQ,即NPQA=90°,

ZPQA=ZC=90°

在.APQ和,ABC中,,

ZA=ZA

APQ~^ABC,

APAQ3-tt

■■■—=—,即Bn——=一,

ABAC53

9

解得f=—,

8

9

故當(dāng)f=一時,DE//AB,

8

(2)如圖,過點Q作QE_LAC于點F,

在HJABC中,NC=90°,AC=3,AB=5,

;.BC=^AB--AC2=4,sinA=—=-,

AB5

二在HUA段中,sinA=1|=|,即勺:,

4

解得尸。=不心

則四邊形BQPC的面積S=SRtABC-SAPQ=^AC-BC-^AP-FQ,

=—1x…3x4--1/C\4

點P到達(dá)點A所需時間為T=3(秒),點Q到達(dá)點B所需時間為T=5(秒),且當(dāng)點P到達(dá)點A時停止運動,

點Q也隨之停止,

又當(dāng)f=0或/=3時,不存在四邊形BQPC,

/.0</<3,

。A

故四邊形BQPC的面積S與t的函數(shù)關(guān)系式S=-?2--Z+6(0<?<3);

⑶SRtABC=^C-BC=^X3X4=6,

..13?26

"-15

26/26

即nn一t2-/+6=—,

555

解得或r=2,

故當(dāng)7=1或r=2時,四邊形BQPC的面積與HrABC的面積比為13:15;

(4)如圖,過點Q作于點H,連接CQ,

ZACB=90°,

HQHAC,

:.^BHQ3cA,

,BH

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論